首页> 外文期刊>The Visual Computer >Accumulation of local maximum intensity for feature enhanced volume rendering
【24h】

Accumulation of local maximum intensity for feature enhanced volume rendering

机译:累积局部最大强度以增强特征渲染

获取原文
获取原文并翻译 | 示例

摘要

Maximum Intensity Difference Accumulation (MIDA) combines the advantage of Direct Volume Rendering (DVR) and Maximum Intensity Projection (MIP). However, many features with local maximum intensity are still missing in the final rendering image. This paper presents a novel approach to focus on features with local maximum intensity within the dataset. Moving Least Squares (MLS) is used to smooth each ray profile during the raycasting in order to eliminate noise in the data and to highlight significant transition points on the profile. We then adopt a local minimum-point searching method to analyze the ray profile, and identify the transition points that mark the local maximum intensity points within the dataset. At the rendering stage, we implement a novel local intensity difference accumulation (LIDA) to accumulate the colors and opacity. Surface shading is introduced to improve the spatial cues of the features. We also employ tone-reduction to preserve the original local contrast. Our approach can highlight local features in the dataset without involving the adjustment of transfer functions. The experiments demonstrate high-quality rendering results at an interactive frame rate.
机译:最大强度差异累积(MIDA)结合了直接体积渲染(DVR)和最大强度投影(MIP)的优势。但是,最终渲染图像中仍然缺少许多具有局部最大强度的特征。本文提出了一种新颖的方法来关注数据集中具有局部最大强度的特征。移动最小二乘(MLS)用于在光线投射期间平滑每个光线轮廓,以消除数据中的噪声并突出轮廓上的重要过渡点。然后,我们采用局部最小点搜索方法来分析射线轮廓,并确定标记数据集中局部最大强度点的过渡点。在渲染阶段,我们实现了一种新颖的局部强度差累积(LIDA)以累积颜色和不透明度。引入了表面着色以改善特征的空间提示。我们还采用减少色调来保留原始的局部对比度。我们的方法可以在不涉及传递函数调整的情况下突出显示数据集中的局部特征。实验证明了交互式帧频下的高质量渲染结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号