首页> 外文期刊>The Visual Computer >Fast level set image and video segmentation using new evolution indicator operators
【24h】

Fast level set image and video segmentation using new evolution indicator operators

机译:使用新的演进指标运算符进行快速的水平集图像和视频分割

获取原文
获取原文并翻译 | 示例

摘要

We propose an effective level set evolution method for robust object segmentation in real images. We construct an effective region indicator and an multiscale edge indicator, and use these two indicators to adaptively guide the evolution of the level set function. The multiscale edge indicator is defined in the gradient domain of the multiscale feature-preserving filtered image. The region indicator is built on the similarity map between image pixels and user specified interest regions, where the similarity map is computed using Gaussian Mixture Models (GMM). Then we combine these two methods to develop a new mixing edge stop function, which makes the level set method more robust to initial active contour setting, and forces the level set to evolve adaptively based on the image content. Furthermore, we apply an acceleration approach to speed up our evolution process, which yields real time segmentation performance. Finally, we extend the proposed approach to video segmentation for achieving effective target tracking results. As the results show, our approach is effective for image and video segmentation and works well to accurately detect the complex object boundaries in real-time.
机译:我们提出了一种有效的水平集演化方法,用于在真实图像中进行鲁棒的对象分割。我们构造了一个有效的区域指标和一个多尺度边缘指标,并使用这两个指标来适应性地指导水平集功能的发展。在保留多尺度特征的滤波图像的梯度域中定义多尺度边缘指示符。区域指示器建立在图像像素与用户指定的兴趣区域之间的相似度图上,其中相似度图是使用高斯混合模型(GMM)计算的。然后,我们将这两种方法结合起来以开发新的混合边缘停止功能,从而使水平设置方法对初始主动轮廓设置更加鲁棒,并强制水平设置根据图像内容自适应地发展。此外,我们采用加速方法来加快我们的进化过程,从而产生实时分割性能。最后,我们将提出的方法扩展到视频分割,以实现有效的目标跟踪结果。结果表明,我们的方法对于图像和视频分割是有效的,并且可以很好地实时准确地检测复杂的对象边界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号