首页> 外文期刊>The Visual Computer >Novel adaptive SPH with geometric subdivision for brittle fracture animation of anisotropic materials
【24h】

Novel adaptive SPH with geometric subdivision for brittle fracture animation of anisotropic materials

机译:几何细分的新型自适应SPH用于各向异性材料的脆性断裂动画

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we articulate a novel particle-centric method to simulate the dynamics of brittle fracture for anisotropic materials. The key motivation of this paper is to develop a new hybrid, particle-based simulation that inherits advantages from both powerful finite element methods and popular mesh-free methods, while overcoming certain disadvantages of both types of methods. Our method stems from two novel aspects: (1) a physical model built upon an improved mechanical framework and the adaptive smoothed particle hydrodynamics (SPH), an improved variant of traditional SPH, which can handle complicated anisotropic elastic behaviors with little extra cost; and (2) a hybrid, adaptive particle system that serves for more accurate fracture modeling with richer details. At the physical level, in order to facilitate better control during the formation of fracture and improve its time performance, we develop a physical framework based on contact mechanics and adopt the stress and energy analysis on the anisotropic SPH numerical integration to pinpoint fracture generation and propagation. At the geometric level, in order to reduce time consumption and enhance accuracy in rigid dynamics and fracture generation, we employ hybrid, fully adaptive particles in the vicinity of fracture regions via geometric subdivision. Our novel approach can facilitate the user to control the generation of cracks with low computational cost and retain high-fidelity crack details during animation. Our comprehensive experiments demonstrate the controllability, effectiveness, and accuracy of our method when simulating various brittle fracture patterns for anisotropic materials.
机译:在本文中,我们阐明了一种新颖的以颗粒为中心的方法来模拟各向异性材料的脆性断裂动力学。本文的主要动机是开发一种新的基于粒子的混合仿真,该仿真可以继承强大的有限元方法和流行的无网格方法的优点,同时克服两种方法的某些缺点。我们的方法源于两个新颖的方面:(1)建立在改进的机械框架和自适应平滑粒子流体动力学(SPH)之上的物理模型,这是传统SPH的改进形式,它可以处理复杂的各向异性弹性行为,而几乎没有额外的成本; (2)混合自适应粒子系统,可用于更精确的裂缝建模以及更多细节。在物理层面,为了便于更好地控制裂缝形成并改善其时间性能,我们开发了基于接触力学的物理框架,并通过对各向异性SPH数值积分的应力和能量分析来确定裂缝的产生和扩展。在几何层次上,为了减少时间消耗并提高刚度动力学和裂缝生成的准确性,我们通过几何细分在裂缝区域附近采用了混合的,完全自适应的粒子。我们的新颖方法可以帮助用户以较低的计算成本控制裂纹的生成,并在动画过程中保留高保真裂纹细节。我们的综合实验证明了在模拟各向异性材料的各种脆性断裂模式时,该方法的可控性,有效性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号