首页> 外文期刊>The Visual Computer >Differential geometric methods for examining the dynamics of slow-fast vector fields
【24h】

Differential geometric methods for examining the dynamics of slow-fast vector fields

机译:用于检查慢速矢量场动力学的微分几何方法

获取原文
获取原文并翻译 | 示例

摘要

In this work we present computational methods for examining dynamical systems. We focus on those systems being characterized by slow-fast vector fields or corresponding differential algebraic equations that commonly occur in physical applications. In the latter ones scientists usually consider a manifold of admissible physical states and a vector field describing the time evolution of the physical system. The manifold is typically implicitly defined within a higher-dimensional space by a system of equations. Certain physical systems, such as relaxation oscillators, perform sudden jumps in their state evolution when they are forced into an unstable state. The main contribution of the present work is to model the dynamical evolution incorporating the jumping behavior from a perspective of computational geometry which not only provides a qualitative analysis but also produces quantitative results. We use geodesic polar coordinates (GPC) to numerically obtain explicit parametrizations of the implicitly defined manifold and of the relevant jump and hit sets. Moreover, to deal with the possibly high co-dimension of the considered implicitly defined manifold we sketch how GPC in combination with the cut locus concept can be used to numerically obtain an essentially injective global para-metrization. This allows us to parametrize and visualize the dynamical evolution of the system including the aforementioned jump phenomena. As main tools we use homotopy approaches in conjunction with concepts from differential geometry. We discuss how to numerically realize and how to apply them to several examples from mechanics, electrical engineering and biology.
机译:在这项工作中,我们提出了检查动力系统的计算方法。我们关注那些以慢速矢量场或相应的微分代数方程为特征的系统,这些系统通常在物理应用中出现。在后一种情况下,科学家通常考虑多种可容许的物理状态和描述物理系统时间演变的矢量场。歧管通常由方程组隐式定义在高维空间内。某些物理系统(例如张弛振荡器)在被迫进入不稳定状态时会在其状态演变中突然跳变。当前工作的主要贡献是从计算几何学的角度对包含跳跃行为的动力学演化进行建模,这不仅提供了定性分析而且还产生了定量结果。我们使用测地极坐标(GPC)从数值上获得隐式定义的流形以及相关的跳跃和命中集的显式参数化。此外,为了处理可能隐含定义的歧管的可能较高的维数,我们绘制了如何将GPC与剪切轨迹概念结合使用的方法,可以在数值上获得本质上是内射的全局参量。这使我们能够对包括上述跳跃现象的系统的动态演化进行参数化和可视化。作为主要工具,我们将同伦方法与微分几何的概念结合使用。我们讨论了如何数值实现以及如何将其应用于力学,电气工程和生物学等多个示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号