首页> 外文期刊>The Visual Computer >Denoising of natural images through robust wavelet thresholding and genetic programming
【24h】

Denoising of natural images through robust wavelet thresholding and genetic programming

机译:通过强大的小波阈值和遗传编程对自然图像进行去噪

获取原文
获取原文并翻译 | 示例

摘要

Digital images play an essential role in analysis tasks that can be applied in various knowledge domains, including medicine, meteorology, geology, and biology. Such images can be degraded by noise during the process of acquisition, transmission, storage, or compression. The use of local filters in image restoration may generate artifacts when these filters are not well adapted to the image content as a result of the heuristic optimization of local filters. Denoising methods based on learning procedure are more capable than parametric filters for addressing the conflicts between noise suppression and artifact reduction. In this study, we present a nonlinear filtering method based on a two-step switching scheme to remove both salt-and-pepper and additive white Gaussian noises. In the switching scheme, two cascaded detectors are used to detect noise, and two corresponding estimators are employed to effectively and efficiently filter the noise in an image. In the process of training, a method according to patch clustering is utilized, and genetic programming (GP) is subsequently applied to determine the optimum filter (wavelet-domain filter) for each individual cluster, while in testing part, the optimum filter trained beforehand by GP is recovered and used on the inputted corrupted patch. This adaptive structure is employed to cope with several noise types. Experimental and comparative analysis results show that the denoising performance of the proposed method is superior to that of existing denoising methods as per both quantitative and qualitative assessments.
机译:数字图像在分析任务中起着至关重要的作用,分析任务可以应用于各种知识领域,包括医学,气象学,地质学和生物学。在获取,传输,存储或压缩过程中,此类图像可能会因噪声而降级。当由于局部滤波器的启发式优化而使这些滤波器不能很好地适应图像内容时,在图像恢复中使用局部滤波器可能会产生伪像。基于学习过程的降噪方法比参数滤波器更有能力解决噪声抑制和伪影减少之间的冲突。在这项研究中,我们提出了一种基于两步切换方案的非线性滤波方法,以消除椒盐味精和加性高斯白噪声。在切换方案中,使用两个级联检测器来检测噪声,并且使用两个相应的估计器来有效地过滤图像中的噪声。在训练过程中,采用了一种基于补丁聚类的方法,随后应用遗传编程(GP)来确定每个单独聚类的最优滤波器(小波域滤波器),而在测试部分中,事先训练的最优滤波器由GP恢复并在输入的已损坏修补程序上使用。采用这种自适应结构来应对几种噪声类型。实验和比较分析结果表明,无论是定量还是定性评估,该方法的去噪性能均优于现有的去噪方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号