首页> 外文期刊>The Visual Computer >A two-level clustering approach for multidimensional transfer function specification in volume visualization
【24h】

A two-level clustering approach for multidimensional transfer function specification in volume visualization

机译:体积可视化中多维传递函数规范的两级聚类方法

获取原文
获取原文并翻译 | 示例

摘要

Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. In this paper, we propose to address the multidimensional transfer function design problem by taking a two-level clustering approach, where the first-level clustering by the self-organizing map (SOM) projects high-dimensional feature data to a 2-D topology preserving map, and the second-level clustering on the SOM neurons reduces the design freedom from a large number of SOM neurons to a manageable number of clusters. Based on the two-level clustering results, we propose a novel volume exploration scheme that provides top-down navigation to users exploring the volume. Guided by an informative volume overview, interesting structures in the volume are discovered interactively by the user selecting clusters to visualize and modifying the clustering results when necessary. Our interface keeps track of each interesting structure discovered, which not only enables users to inspect individual structures closely, but also allows them to compose the final visualization by fusing the structures deemed important.
机译:与一维传递函数相比,多维传递函数可以对体积对象执行更复杂的分类。但是,当传递函数空间的尺寸超过3-D时,可视化和操纵传递函数空间是不直观的,因此使用户交互变得困难。在本文中,我们建议采用两级聚类方法来解决多维传递函数设计问题,其中,自组织图(SOM)进行的第一级聚类将高维特征数据投影到二维拓扑中保留地图,并且SOM神经元上的第二级聚类将设计自由度从大量SOM神经元减少到可管理数目的聚类。基于两级聚类结果,我们提出了一种新颖的体量探索方案,该方案为用户探索体量提供了自上而下的导航。在翔实的卷概述的指导下,用户可以通过选择聚类以在可视情况下可视化和修改聚类结果,从而交互式地发现卷中有趣的结构。我们的界面会跟踪发现的每个有趣的结构,这不仅使用户能够仔细检查各个结构,而且还使他们能够通过融合被认为重要的结构来构成最终的可视化效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号