首页> 外文期刊>The Visual Computer >The application of interactive methods under swarm computing and artificial intelligence in image retrieval and personalized analysis
【24h】

The application of interactive methods under swarm computing and artificial intelligence in image retrieval and personalized analysis

机译:交互式方法在群中的计算和人工智能下的图像检索和个性化分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

The aim is to explore the interactive methods based on swarm computing and improve the image retrieval effects and personalized recommendation accuracy. The interactive methods based on swarm computing are explored. The mechanism of swarm intelligence (SI) algorithm is analyzed, in which the particle swarm optimization (PSO) algorithm and its improved algorithm are selected. The selected algorithms are combined with content-based image retrieval technology and applied to the image retrieval process, thereby realizing personalized analysis and recommendation based on users' interests. Finally, the image retrieval behaviors of users are analyzed through simulation experiments, which verify the accuracy of the recommendation results. In the six sets of experiments, the image retrieval system based on the quantum behavior PSO (QPSO) has better performance compared to other PSO and SI evolution algorithms. The image retrieval accuracy of the proposed Bayesian personalized ranking (BPR) optimization algorithm (BPR-U2B) has significantly better performance compared to other recommendation algorithms. The QPSO algorithm is the best SI evolution algorithm for image retrieval. The BPR-U2B algorithm is combined with the collaborative filtering algorithm based on BPR. It optimizes the objective function to limit the ranking results of the BPR algorithm, which is beneficial to complete the image recommendations and improve the personalized recommendation effects for users.
机译:目的是探讨基于群体计算的交互式方法,提高图像检索效果和个性化推荐准确性。探索了基于群计算的交互式方法。分析了群体智能(SI)算法的机制,其中选择了粒子群优化(PSO)算法及其改进的算法。所选算法与基于内容的图像检索技术组合并应用于图像检索过程,从而实现了基于用户的兴趣的个性化分析和推荐。最后,通过仿真实验分析用户的图像检索行为,验证了推荐结果的准确性。在六组实验中,与其他PSO和SI演化算法相比,基于量子行为PSO(QPSO)的图像检索系统具有更好的性能。与其他推荐算法相比,所提出的贝叶斯个性化排名(BPR)优化算法(BPR-U2B)的图像检索精度具有明显更好的性能。 QPSO算法是图像检索的最佳SI演化算法。 BPR-U2B算法与基于BPR的协同滤波算法组合。它优化了限制BPR算法的排名结果的目标函数,这有利于完成图像建议,并改善用户的个性化推荐效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号