首页> 外文期刊>The Visual Computer >A semi-supervised deep learning approach for circular hole detection on composite parts
【24h】

A semi-supervised deep learning approach for circular hole detection on composite parts

机译:复合部件圆孔检测的半监控深层学习方法

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces the usage of semi-supervised learning to obtain competitive detection accuracy of measuring drilled holes on composite parts with very limited noisy training data. An improved texture segmentation algorithm based on local binary patterns algorithm is proposed, named local exponential patterns. The algorithm divides the image texture into nine levels, of which the highest level of texture is selected for contour extraction. An ellipse fitting method is used to fit the target contours and vote for the candidate ellipses. The regions inside the candidate ellipses are taken as the semi-supervised semantic label for images. A new loss named round loss is proposed, and a superior circle segmentation model was trained by learning from incompletely annotated data. To verify the effectiveness of the method, experiments were conducted with the drilled holes on the composite parts. The results show that the proposed semi-supervised deep learning approach is exceedingly suitable for circle detection of holes with different texture information commonly found in robotic drilling. Massive data labeling can be completely avoided with proposed method. The measurement accuracy can reach 0.03 mm, which can meet the visual measurement requirements of the circular holes on composite parts in the robotic drilling system.
机译:本文介绍了半监控学习,以非常有限的嘈杂训练数据获得测量钻孔孔的竞争检测精度。提出了一种基于局部二进制模式算法的改进的纹理分割算法,命名为局部指数模式。该算法将图像纹理划分为九个电平,其中选择最高水平的纹理用于轮廓提取。椭圆拟合方法用于适合候选椭圆的目标轮廓并投票。候选省略号内的区域被视为图像的半监督语义标签。提出了一个名为圆形损失的新损失,通过从不完全注释的数据中学习培训卓越的圆分割模型。为了验证该方法的有效性,用复合部件上的钻孔进行实验。结果表明,所提出的半监督深度学习方法非常适合具有在机器人钻井中常见的不同纹理信息的孔圈检测。通过提出的方法可以完全避免大规模数据标签。测量精度可达到0.03 mm,这可以满足机器人钻井系统中复合部件上圆孔的可视测量要求。

著录项

  • 来源
    《The Visual Computer》 |2021年第3期|433-445|共13页
  • 作者单位

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Peoples R China|Zhejiang Univ Sch Mech Engn Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Peoples R China|Zhejiang Univ Sch Mech Engn Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Peoples R China|Zhejiang Univ Sch Mech Engn Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Texture segmentation; LEP; LBP; Deep learning; Semi-supervised learning;

    机译:纹理分割;LEP;LBP;深度学习;半监督学习;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号