首页> 外文期刊>The Visual Computer >Deep green function convolution for improving saliency in convolutional neural networks
【24h】

Deep green function convolution for improving saliency in convolutional neural networks

机译:深绿色功能卷积,用于提高卷积神经网络显着性

获取原文
获取原文并翻译 | 示例

摘要

Current saliency methods require to learn large-scale regional features using small convolutional kernels, which is not possible with a simple feed-forward network. Some methods solve this problem by using segmentation into superpixels, while others downscale the image through the network and rescale it back to its original size. The objective of this paper is to show that saliency convolutional neural networks (CNN) can be improved by using a Green's function convolution (GFC) to extrapolate edges features into salient regions. The GFC acts as a gradient integrator, allowing to produce saliency features by filling thin edges directly inside the CNN. Hence, we propose the gradient integration and sum (GIS) layer that combines the edges features with the saliency features. Using the HED and DSS architecture, we demonstrated that adding a GIS layer near the network's output allows to reduce the sensitivity to the parameter initialization, to reduce the overfitting and to improve the repeatability of the training. By simply adding a GIS layer to the state-of-the-art DSS model, there is an absolute increase of 1.6% for the F-measure on the DUT-OMRON dataset, with only 10 ms of additional computation time. The GIS layer further allows the network to perform significantly better in the case of highly noisy images or low-brightness images. In fact, we observed an F-measure improvement of 5.2% when noise was added to the dataset and 2.8% when the brightness was reduced. Since the GIS layer is model agnostic, it can be implemented into different fully convolutional networks. Further, we showed that it outperforms the denseCRF post-processing method and is 40 times faster. A major contribution of the current work is the first implementation of Green's function convolution inside a neural network, which allows the network, via very minor architectural changes and no additional parameters, to operate in the feature domain and in the gradient domain at the same time, thus improving the regional representation via edge filling.
机译:当前的显着性方法需要使用小型卷积内核来学习大规模的区域特征,这是一个简单的前锋网络不可能。一些方法通过使用分段在超像素中解决了这个问题,而另一些方法通过网络缩小图像并将其重新归回其原始尺寸。本文的目的是表明,通过使用绿色的功能卷积(GFC)可以改善显着的卷积神经网络(CNN)以将边缘特征推向突出区域。 GFC充当梯度积分器,允许通过直接在CNN内填充细边来产生显着性功能。因此,我们提出了将边缘特征与显着性功能组合的渐变集成和和(GIS)层。使用HED和DSS架构,我们演示了在网络输出附近添加GIS层允许降低参数初始化的灵敏度,以减少过度装备并提高培训的可重复性。通过简单地将GIS层添加到最先进的DSS模型,对于DUT-Omron数据集上的F测量值绝对增加1.6%,只有10毫秒的额外计算时间。在高度嘈杂的图像或低亮度图像的情况下,GIS层进一步允许网络显着更好地执行。事实上,当噪声减少时,我们观察到在数据集中的噪声和2.8%时,在第5.2%的情况下提高了5.2%。由于GIS层是模型不可知的,因此它可以实现为不同的完全卷积网络。此外,我们表明它优于Densecrf后处理方法,速度快40倍。目前工作的主要贡献是在神经网络内的绿色函数卷积的第一次实现,它允许网络,通过非常次要的架构更改和没有其他参数,在特征域和梯度域中同时在梯度域中运行,从而通过边缘填充改善区域表示。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号