首页> 外文期刊>The Visual Computer >Face recognition in unconstrained environment with CNN
【24h】

Face recognition in unconstrained environment with CNN

机译:CNN无拘应环境中的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, we develop such a framework to learn a robust face verification in an unconstrained environment using aggressive data augmentation. Our objective is to learn a deep face representation from large-scale data with massive noisy and occluded face. Besides, we add an adaptive fusion of softmax loss and center loss as supervision signals, which are helpful to improve the performance and to conduct the final classification. The experiment results show that the suggested system achieves comparable performances with other state-of-the-art methods on the Labeled Faces in the Wild and YouTube face verification tasks.
机译:近年来,卷积神经网络已被证明是一种高效的人脸识别方法。在本文中,我们开发了这样一个框架,以使用积极的数据增强来学习无限制环境中的强大面部验证。我们的目标是通过大规模嘈杂和遮挡面的大规模数据学习深层面对面。此外,我们为Softmax丢失和中心损失添加了自适应融合,作为监控信号,这有助于提高性能并进行最终分类。实验结果表明,建议的系统在野生和yo​​utube面部验证任务中标记面上的其他最先进的方法实现了可比的性能。

著录项

  • 来源
    《The Visual Computer》 |2021年第2期|217-226|共10页
  • 作者单位

    Univ Monastir Fac Sci Monastir Lab Microelect & Instrumentat Monastir Tunisia;

    Univ Monastir Fac Sci Monastir Lab Microelect & Instrumentat Monastir Tunisia;

    Univ Sousse Inst Super Sci Appl & Technol Sousse Sousse Tunisia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Face recognition; Deep learning; Data augmentation;

    机译:人脸识别;深入学习;数据增强;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号