首页> 外文期刊>The Visual Computer >Action matching network: open-set action recognition using spatio-temporal representation matching
【24h】

Action matching network: open-set action recognition using spatio-temporal representation matching

机译:行动匹配网络:使用时空表示匹配的开放式动作识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address an open-set action recognition problem. While the closed-set action recognition classifies test samples into the same classes of actions used for model training, the problem of the open-set action recognition is more challenging because there is a possibility that the trained model has to recognize actions which do not appear in the training set. To address this issue, we propose an action matching network (AMN) that can identify and classify both actions in the training dataset and the actions not included in the set. AMN extracts spatio-temporal representations from the given video clips and constructs an action dictionary using the given samples. Then, AMN classifies an action by computing the similarity based on Euclidean distance or generates a new action class in the constructed dictionary if it is necessary. Experimental results on UCF101 dataset and a large human motion dataset (a.k.a., HMDB dataset) demonstrate the benefits of AMN over the state-of-the-art approaches to open-set action recognition problems.
机译:在本文中,我们解决了一个开放式动作识别问题。虽然闭合动作识别将测试样本分类为用于模型培训的相同类别,但开放式动作识别的问题更具挑战性,因为培训的模型可能必须识别未出现的动作在训练集中。要解决此问题,我们提出了一个动作匹配的网络(AMN),它可以识别和分类训练数据集中的操作以及所设置中未包含的操作。 AMN从给定的视频剪辑提取短时间表示,并使用给定的样本构造动作词典。然后,AMN通过基于欧几里德距离计算相似性或在所构造的字典中生成新动作类别,根据需要,通过计算动作。 UCF101数据集的实验结果和大型人为运动数据集(A.K.A.,HMDB数据集)展示了AMN在最先进的开放式动作识别问题上的益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号