首页> 外文期刊>The Visual Computer >CrowdEst: a method for estimating (and not simulating) crowd evacuation parameters in generic environments
【24h】

CrowdEst: a method for estimating (and not simulating) crowd evacuation parameters in generic environments

机译:批量:一种估算通用环境中的(且未模拟)人群疏散参数的方法

获取原文
获取原文并翻译 | 示例

摘要

Evacuation plans have been historically used as a safety measure for the construction of buildings. The existing crowd simulators require fully modeled 3D environments and enough time to prepare and simulate scenarios, where the distribution and behavior of the crowd needs to be controlled. In addition, its population, routes or even doors and passages may change, so the 3D model and configurations have to be updated accordingly. This is a time-consuming task that commonly has to be addressed within the crowd simulators. With that in mind, we present a novel approach to estimate the resulting data of a given evacuation scenario without actually simulating it. For such, we divide the environment into smaller modular rooms with different configurations, in a divide-and-conquer fashion. Next, we train an artificial neural network to estimate all required data regarding the evacuation of a single room. After collecting the estimated data from each room, we develop a heuristic capable of aggregating per-room information so the full environment can be properly evaluated. Our method presents an average error of 5% when compared to evacuation time in a real-life environment. Our crowd estimator approach has several advantages, such as not requiring to model the 3D environment, nor learning how to use and configure a crowd simulator, which means any user can easily use it. Furthermore, the computational time to estimate evacuation data (inference time) is virtually zero, which is much better even when compared to the best-case scenario in a real-time crowd simulator.
机译:疏散计划已被历史上用作建筑物建设的安全措施。现有的人群模拟器需要完全建模的3D环境以及足够的时间准备和模拟场景,其中需要控制人群的分布和行为。此外,它的人口,路线甚至门和段落可能会改变,因此必须相应地更新3D模型和配置。这是一个耗时的任务,通常必须在人群模拟器内解决。考虑到这一点,我们提出了一种新的方法来估计给定的疏散方案的所产生的数据而无需实际模拟它。为此,我们将环境划分为具有不同配置的较小模块化房间,以剥离和征服时尚。接下来,我们训练一个人工神经网络来估计关于单个房间的疏散的所有所需数据。在从每个房间收集估计的数据后,我们开发一个能够汇总每房间信息的启发式,因此可以正确评估完整的环境。与现实生活环境中的疏散时间相比,我们的方法呈现了5%的平均误差。我们的人群估算方法具有几个优点,例如不需要建模3D环境,也不学习如何使用和配置人群模拟器,这意味着任何用户都可以轻松使用它。此外,估计疏散数据(推理时间)的计算时间几乎为零,即使与实时人群模拟器中的最佳情况相比,即使与最佳情况相比,也要更好。

著录项

  • 来源
    《The Visual Computer》 |2019年第8期|1119-1130|共12页
  • 作者单位

    Pontificia Univ Catolica Rio Grande do Sul Sch Technol Grad Program Comp Sci Porto Alegre RS Brazil;

    Pontificia Univ Catolica Rio Grande do Sul Sch Technol Grad Program Comp Sci Porto Alegre RS Brazil;

    Pontificia Univ Catolica Rio Grande do Sul Sch Technol Grad Program Comp Sci Porto Alegre RS Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Crowd simulation; Crowd estimation; Neural networks;

    机译:人群仿真;人群估计;神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号