首页> 外文期刊>The Visual Computer >Super-resolution image reconstruction using fractional-order total variation and adaptive regularization parameters
【24h】

Super-resolution image reconstruction using fractional-order total variation and adaptive regularization parameters

机译:使用分数阶总变化量和自适应正则化参数的超分辨率图像重建

获取原文
获取原文并翻译 | 示例

摘要

Single-image super-resolution (SR) reconstruction aims to obtain a high-resolution (HR) image from a low-resolution (LR) image. In this paper, a hybrid single-image SR model integrated total variation (TV) and fractional-order TV (FOTV) is proposed to pursuit the adaptive reconstruction of the HR image. Specifically, fractional order in the proposed SR model is adaptively set according to the textural feature of the LR image firstly; then, the SR model is separated into two sub-models with each of them containing exactly one regularization parameter. These two sub-models are solved by using alternating direction multiplier method, and two regularization parameters are concurrently updated by using discrepancy principle. Finally, the solutions of two sub-models are interactively averaged to reconstruct HR image. The results of experiments indicated that the proposed hybrid SR model with adaptive regularization parameters has a comparative performance compared with state-of-the-art methods. Moreover, it would be potentially more adaptive for the condition of varied blurred kernels.
机译:单图像超分辨率(SR)重建旨在从低分辨率(LR)图像中获得高分辨率(HR)图像。本文提出了一种将总变化量(TV)和分数阶电视(FOTV)相结合的混合单图像SR模型,以寻求对HR图像的自适应重建。具体地,首先根据LR图像的纹理特征来自适应地设置所提出的SR模型中的分数阶。然后,将SR模型分为两个子模型,每个子模型仅包含一个正则化参数。使用交替方向乘子法求解这两个子模型,并使用差异原理同时更新两个正则化参数。最后,将两个子模型的解进行交互式平均以重建HR图像。实验结果表明,所提出的具有自适应正则化参数的混合SR模型与最新方法相比具有可比的性能。而且,它可能更适应变化的模糊内核的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号