首页> 外文期刊>The Visual Computer >A unified model for human activity recognition using spatial distribution of gradients and difference of Gaussian kernel
【24h】

A unified model for human activity recognition using spatial distribution of gradients and difference of Gaussian kernel

机译:利用梯度空间分布和高斯核差的人类活动识别统一模型

获取原文
获取原文并翻译 | 示例

摘要

Understanding of human action and activity from video data is growing field and received rapid importance due to surveillance, security, entertainment and personal logging. In this work, a new hybrid technique is proposed for the description of human action and activity in video sequences. The unified framework endows a robust feature vector wrapping both global and local information strengthening discriminative depiction of action recognition. Initially, entropy-based texture segmentation is used for human silhouette extraction followed by construction of average energy silhouette images (AEIs). AEIs are the 2D binary projection of human silhouette frames of the video sequences, which reduces the feature vector generation time complexity. Spatial Distribution Gradients are computed at different levels of resolution of sub-images of AEI consisting overall shape variations of human silhouette during the activity. Due to scale, rotation and translation invariant properties of STIPs, the vocabulary of DoG-based STIPs are created using vector quantization which is unique for each class of the activity. Extensive experiments are conducted to validate the performance of the proposed approach on four standard benchmarks, i.e., Weizmann, KTH, Ballet Movements, Multi-view IXMAS. Promising results are obtained when compared with the similar state of the arts, demonstrating the robustness of the proposed hybrid feature vector for different types of challenges-illumination, view variations posed by the datasets.
机译:从视频数据中了解人类行为和活动的领域正在增长,并且由于监视,安全性,娱乐和个人日志记录而变得越来越重要。在这项工作中,提出了一种新的混合技​​术来描述视频序列中的人类动作和活动。统一的框架赋予了强大的特征向量,这些特征向量既包裹了全局信息又包裹了局部信息,从而增强了动作识别的区别性描述。最初,基于熵的纹理分割用于人体轮廓提取,然后构造平均能量轮廓图像(AEI)。 AEI是视频序列中人的轮廓帧的2D二进制投影,可降低特征向量生成时间的复杂度。空间分布梯度是在AEI子图像的不同分辨率级别上计算的,该分辨率包括活动期间人体轮廓的整体形状变化。由于STIP的规模,旋转和平移不变性,基于DoG的STIP的词汇表是使用矢量量化创建的,矢量量化对于活动的每个类别都是唯一的。进行了广泛的实验以验证所提出的方法在四个标准基准上的性能,即Weizmann,KTH,芭蕾舞动作,多视点IXMAS。与同类技术相比较时,可获得令人鼓舞的结果,证明了所提出的混合特征向量对于不同类型的挑战照明的稳健性,以及由数据集构成的视图变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号