首页> 外文期刊>The Visual Computer >Role of normalization of breast thermogram images and automatic classification of breast cancer
【24h】

Role of normalization of breast thermogram images and automatic classification of breast cancer

机译:乳房热像图图像标准化和乳腺癌自动分类的作用

获取原文
获取原文并翻译 | 示例

摘要

Breast thermography is a non-invasive imaging technique used for early detection of breast cancer based on temperatures. Temperature matrix of breast provides minute variations in temperatures, which is significant in early detection of breast cancer. The minimum, maximum temperatures and the their range may be different for each breast thermogram. Normalization of temperature matrices of breast thermograms is essential to bring the different range of temperatures to the common scale. In this article, we demonstrate the importance of temperature matrix normalization of breast thermograms. This paper also proposes a novel method for automatically classifying breast thermogram images using local energy features of wavelet sub-bands. A significant subset of features is selected by a random subset feature selection (RSFS) and genetic algorithm. Features selected by RSFS method are found to be relevant in detection of asymmetry between right and left breast. We have obtained an accuracy of 91%, sensitivity 87.23% and specificity 94.34% using SVM Gaussian classifier for normalized breast thermograms. Accuracy of classification between a set of hundred normalized and corresponding set of non-normalized breast thermograms are compared. An increase in accuracy of 16% is obtained for normalized breast thermograms in comparison with non-normalized breast thermograms.
机译:乳房热成像技术是一种非侵入性成像技术,用于基于温度的乳腺癌早期检测。乳房的温度矩阵可提供微小的温度变化,这对早期发现乳腺癌非常重要。每个乳房温度记录图的最低,最高温度及其范围可能不同。乳房温度记录图温度矩阵的归一化对于将不同温度范围带到通用范围至关重要。在本文中,我们证明了乳房温度记录图温度矩阵归一化的重要性。本文还提出了一种利用小波子带的局部能量特征自动分类乳房热像图图像的新方法。通过随机子集特征选择(RSFS)和遗传算法选择特征的重要子集。发现通过RSFS方法选择的特征与检测左右乳房之间的不对称有关。使用SVM高斯分类器对乳房温度进行标准化,我们获得了91%的准确性,87.23%的敏感性和94.34%的特异性。比较了一组一百个归一化的乳房温度记录图和相应的一组非归一化的乳房温度记录图之间的分类准确性。与未归一化的乳房温谱图相比,归一化的乳房温谱图的准确性提高了16%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号