首页> 外文期刊>The Computer journal >Fairness in Real-Time Energy Pricing for Smart Grid Using Unsupervised Learning
【24h】

Fairness in Real-Time Energy Pricing for Smart Grid Using Unsupervised Learning

机译:使用无监督学习的智能电网实时能源定价中的公平性

获取原文
获取原文并翻译 | 示例

摘要

The capabilities of the Smart Grid coupled with dynamic pricing enables the Smart Grid to adaptively manage the electricity generation and distribution. Several dynamic real-time pricing schemes have been proposed in recent times but few have been successfully implemented despite their economic and environmental benefits. In particular, the current real-time pricing schemes have not been able to incentivize subscribers to respond to time-varying prices in order for the smart-grid to fully benefit from such pricing. Traditional pricing schemes failed to incorporate fairness for end-users because real-time data gathering was expensive and impractical before smart devices were incorporated into the grid. In this paper, we propose a novel dynamic pricing model, fair dynamic pricing (FDP), to maintain reliable power supply during times of peak demand. The proposed model is analyzed and evaluated using a real-time consumer load dataset from San Diego, CA, USA. We demonstrate that in periods of peak load, the burden of generating expensive electricity is placed on subscribers responsible for creating the peaks rather than being subsidized by the remaining subscribers. Our results show that FDP improves the rates of low-demand subscribers by 18.4% and charges a penalty of up to 34% to high-demand subscribers for 400 sample observations. This percentage varies with the number of subscribers in the system during an interval and real-time prices.
机译:智能电网的功能与动态定价相结合,使智能电网能够自适应地管理发电和配电。近年来已经提出了几种动态实时定价方案,但是尽管其具有经济和环境效益,却很少成功地实施。特别是,当前的实时定价方案无法激励用户响应随时间变化的价格,以使智能电网完全从此类定价中受益。传统的定价方案未能为最终用户带来公平,因为在将智能设备并入网格之前,实时数据收集非常昂贵且不切实际。在本文中,我们提出了一种新颖的动态定价模型,即公平动态定价(FDP),以在需求高峰时维持可靠的电力供应。使用来自美国加利福尼亚州圣地亚哥的实时消费者负载数据集对提出的模型进行分析和评估。我们证明,在高峰负荷时期,产生昂贵电力的负担由负责产生高峰的用户承担,而不是由其余用户补贴。我们的结果表明,FDP将低需求用户的比率提高了18.4%,并且对400个样本观测的高需求用户收取了高达34%的罚款。该百分比随着时间间隔和实时价格中系统中订户数量的变化而变化。

著录项

  • 来源
    《The Computer journal》 |2019年第3期|414-429|共16页
  • 作者单位

    Natl Univ Comp & Emerging Sci, Dept Comp Sci, AK Brohi Rd,H-11-4, Islamabad, Islamabad Capit, Pakistan;

    Natl Univ Comp & Emerging Sci, Dept Comp Sci, AK Brohi Rd,H-11-4, Islamabad, Islamabad Capit, Pakistan;

    Natl Univ Comp & Emerging Sci, Dept Comp Sci, AK Brohi Rd,H-11-4, Islamabad, Islamabad Capit, Pakistan;

    Natl Univ Comp & Emerging Sci, Dept Comp Sci, AK Brohi Rd,H-11-4, Islamabad, Islamabad Capit, Pakistan;

    Natl Univ Comp & Emerging Sci, Dept Comp Sci, AK Brohi Rd,H-11-4, Islamabad, Islamabad Capit, Pakistan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Smart Grid; dynamic pricing; fairness; clustering; k-Means;

    机译:智能电网动态定价公平聚类k均值;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号