首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part A >Multiple stochastic learning automata for vehicle path control in an automated highway system
【24h】

Multiple stochastic learning automata for vehicle path control in an automated highway system

机译:用于高速公路系统中车辆路径控制的多随机学习自动机

获取原文
获取原文并翻译 | 示例

摘要

This paper suggests an intelligent controller for an automated vehicle planning its own trajectory based on sensor and communication data. The intelligent controller is designed using the learning stochastic automata theory. Using the data received from on-board sensors, two automata (one for lateral actions, one for longitudinal actions) can learn the best possible action to avoid collisions. The system has the advantage of being able to work in unmodeled stochastic environments, unlike adaptive control methods or expert systems. Simulations for simultaneous lateral and longitudinal control of a vehicle provide encouraging results.
机译:本文提出了一种用于自动车辆的智能控制器,该控制器基于传感器和通信数据来规划自己的轨迹。智能控制器是根据学习随机自动机理论设计的。利用从车载传感器接收到的数据,两个自动机(一个用于横向动作,一个用于纵向动作)可以学习避免碰撞的最佳可能动作。与自适应控制方法或专家系统不同,该系统具有能够在未建模的随机环境中工作的优势。车辆同时进行横向和纵向控制的模拟结果令人鼓舞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号