首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part A, Systems and humans >Computationally efficient algorithms for multiple fault diagnosis in large graph-based systems
【24h】

Computationally efficient algorithms for multiple fault diagnosis in large graph-based systems

机译:基于大型图的系统中用于多个故障诊断的计算有效算法

获取原文
获取原文并翻译 | 示例

摘要

Graph-based systems are models wherein the nodes represent the components and the edges represent the fault propagation between the components. For critical systems, some components are equipped with smart sensors for on-board system health management. When an abnormal situation occurs, alarms will be triggered from these sensors. This paper considers the problem of identifying the set of potential failure sources from the set of ringing alarms in graph-based systems. However, the computational complexity of solving the optimal multiple fault diagnosis (MFD) problem is exponential. Based on Lagrangian relaxation and subgradient optimization, we present a heuristic algorithm to find approximately the most likely candidate fault set. A computationally cheaper heuristic algorithm - primal heuristic - has also been applied to the problem so that real-time MFD in systems with several thousand failure sources becomes feasible in a fraction of a second. This paper also considers systems with asymmetric and multivalued alarms (tests).
机译:基于图的系统是模型,其中节点表示组件,边缘表示组件之间的故障传播。对于关键系统,某些组件配备了用于车载系统健康管理的智能传感器。当发生异常情况时,这些传感器将触发警报。本文考虑了在基于图形的系统中从一组振铃警报中识别出潜在故障源的问题。但是,解决最佳多重故障诊断(MFD)问题的计算复杂度是指数级的。基于拉格朗日松弛和次梯度优化,我们提出了一种启发式算法,以找到大约最可能的候选故障集。一种计算上更便宜的启发式算法-原始启发式-也已应用于该问题,因此具有数千个故障源的系统中的实时MFD在几分之一秒之内就变得可行。本文还考虑了具有非对称和多值警报(测试)的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号