首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part A, Systems and humans >Reinforcement Learning in Strategy Selection for a Coordinated Multirobot System
【24h】

Reinforcement Learning in Strategy Selection for a Coordinated Multirobot System

机译:协同多机器人系统策略选择中的强化学习

获取原文
获取原文并翻译 | 示例

摘要

This correspondence presents a multistrategy decision making system for robot soccer games. Through reinforcement processes, the coordination between robots is learned in the course of game. Meanwhile, a better action can be granted after an iterative learning process. The experimental scenario is a five-versus-five soccer game, where the proposed system dynamically assigns each player to a position in a primitive role, such as attacker, goalkeeper, etc. The responsibility of each player varies along with the change of the role in state transitions. Therefore, the system uses several strategies, such as offensive strategy, defensive strategy, and so on, for a variety of scenarios. Thus, the decision-making mechanism can choose a better strategy according to the circumstances encountered. In each strategy, a robot should behave in coordination with its teammates and resolve conflicts aggressively. The major task assignment to robots in each strategy is simply to catch good positions. Therefore, the problem of dispatching robots to good positions in a reasonable manner should be effectively handled with. This kind of problem is similar to assignment problems in linear programming research. Utilizing the Hungarian method, each robot can be assigned to its assigned spot with minimal cost. Consequently, robots based on the proposed decision-making system can accomplish each situational task in coordination.
机译:该对应关系提供了一种用于机器人足球比赛的多策略决策系统。通过强化过程,可以在游戏过程中学习机器人之间的协调。同时,经过反复的学习过程,可以采取更好的措施。实验场景是五对五足球比赛,其中建议的系统动态地将每个玩家分配到原始角色(例如攻击者,守门员等)中的位置。每个玩家的责任随着角色的变化而变化在状态转换中。因此,系统针对多种情况使用了多种策略,例如进攻策略,防守策略等。因此,决策机制可以根据遇到的情况选择更好的策略。在每种策略中,机器人都应与其队友协调行动,并积极解决冲突。在每种策略中分配给机器人的主要任务只是简单地抓住好位置。因此,应该有效地解决以合理的方式将机器人分配到合适位置的问题。这种问题类似于线性规划研究中的分配问题。利用匈牙利方法,可以以最小的成本将每个机器人分配到其分配的地点。因此,基于所提出的决策系统的机器人可以协调完成每种情况任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号