首页> 外文期刊>Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on >General Visualization Abstraction Algorithm for Directable Interfaces: Component Performance and Learning Effects
【24h】

General Visualization Abstraction Algorithm for Directable Interfaces: Component Performance and Learning Effects

机译:定向接口的通用可视化抽象算法:组件性能和学习效果

获取原文
获取原文并翻译 | 示例

摘要

Prior results demonstrated that the general visualization abstraction (GVA) algorithm can perform information abstraction (i.e., selection and grouping) and determine how information items should be presented (i.e., size) while lowering workload and improving situational awareness and task performance. This paper presents results from a within-subject evaluation to ascertain the relative strengths and weaknesses of the GVA algorithm's components and associated learning effects. The results corroborate the previous results and demonstrate that the GVA algorithm's underlying subcomponent structural composition is beneficial. Furthermore, these results indicate that usage of the GVA algorithm requires some learning before the benefits are achieved.
机译:先前的结果表明,通用可视化抽象(GVA)算法可以执行信息抽象(即选择和分组)并确定应如何显示信息项(即大小),同时降低工作量并提高态势感知和任务绩效。本文提出了一项主题内评估的结果,以确定GVA算法组件的相对优势和劣势以及相关的学习效果。结果证实了先前的结果,并证明了GVA算法的基础子组件结构组成是有益的。此外,这些结果表明,在实现收益之前,需要对GVA算法的使用进行一些学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号