首页> 外文期刊>Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on >SPEED: An Inhabitant Activity Prediction Algorithm for Smart Homes
【24h】

SPEED: An Inhabitant Activity Prediction Algorithm for Smart Homes

机译:SPEED:智能家居的居民活动预测算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an algorithm, called sequence prediction via enhanced episode discovery (SPEED), to predict inhabitant activity in smart homes. SPEED is a variant of the sequence prediction algorithm. It works with the episodes of smart home events that have been extracted based on the on –off states of home appliances. An episode is a set of sequential user activities that periodically occur in smart homes. The extracted episodes are processed and arranged in a finite-order Markov model. A method based on prediction by partial matching (PPM) algorithm is applied to predict the next activity from the previous history. The result shows that SPEED achieves an 88.3% prediction accuracy, which is better than LeZi Update, Active LeZi, IPAM, and C4.5.
机译:本文提出了一种算法,即通过增强情节发现(SPEED)进行序列预测,以预测智能家居中的居民活动。 SPEED是序列预测算法的一种变体。它适用于基于家用电器的开关状态提取的智能家居事件的情节。情节是在智能家居中定期发生的一系列顺序用户活动。提取的情节在有限阶马尔可夫模型中进行处理和排列。一种基于部分匹配预测(PPM)算法的方法被应用于根据先前的历史预测下一个活动。结果表明,SPEED的预测精度达到88.3%,优于LeZi Update,Active LeZi,IPAM和C4.5。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号