首页> 外文期刊>Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on >Stochastic Continuous Petri Nets: An Approximation of Markovian Net Models
【24h】

Stochastic Continuous Petri Nets: An Approximation of Markovian Net Models

机译:随机连续Petri网:马尔可夫网络模型的逼近

获取原文
获取原文并翻译 | 示例

摘要

Fluidization constitutes a relaxation technique to study discrete event systems through a continuous approximated model, thus overcoming the state explosion problem. In this paper, the approximation of the average marking of Markovian Petri nets by the marking of the corresponding timed continuous Petri nets, under infinite-server semantics, is studied. This represents a sort of legitimization for the use of a continuous Petri net as a relaxation of a discrete Petri net. The main contribution is the addition of Gaussian noise in order to improve the approximation when the number of active servers (enabling degree) is large. The improvement is more evident when the system evolves “close” to the boundary of regions. In such a case, not only the expected value but also the probability distribution function of the marking may be approximated.
机译:流化技术构成了一种松弛技术,可以通过连续近似模型研究离散事件系统,从而克服状态爆炸问题。本文研究了在无限服务器语义下,用相应的定时连续Petri网的标记来近似Markovian Petri网的平均标记的方法。这代表使用连续陪替氏网作为离散陪替氏网的松弛的合法化。主要作用是增加了高斯噪声,以便在活动服务器数量(启用程度)较大时提高近似度。当系统“接近”区域边界发展时,这种改进更加明显。在这种情况下,不仅可以近似期望值,而且可以近似标记的概率分布函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号