首页> 外文期刊>Systems, Man, and Cybernetics: Systems, IEEE Transactions on >Tracking Generic Human Motion via Fusion of Low- and High-Dimensional Approaches
【24h】

Tracking Generic Human Motion via Fusion of Low- and High-Dimensional Approaches

机译:通过低维和高维方法的融合来跟踪人类的一般运动

获取原文
获取原文并翻译 | 示例

摘要

Tracking generic human motion is highly challenging due to its high-dimensional state space and the various motion types involved. In order to deal with these challenges, a fusion formulation which integrates low- and high-dimensional tracking approaches into one framework is proposed. The low-dimensional approach successfully overcomes the high-dimensional problem of tracking the motions with available training data by learning motion models, but it only works with specific motion types. On the other hand, although the high-dimensional approach may recover the motions without learned models by sampling directly in the pose space, it lacks robustness and efficiency. Within the framework, the two parallel approaches, low- and high-dimensional, are fused via a probabilistic approach at each time step. This probabilistic fusion approach ensures that the overall performance of the system is improved by concentrating on the respective advantages of the two approaches and resolving their weak points. The experimental results, after qualitative and quantitative comparisons, demonstrate the effectiveness of the proposed approach in tracking generic human motion.
机译:由于其高维状态空间和所涉及的各种运动类型,因此跟踪一般人类运动非常具有挑战性。为了应对这些挑战,提出了将低维和高维跟踪方法集成到一个框架中的融合公式。低维方法通过学习运动模型成功地克服了使用可用训练数据跟踪运动的高维问题,但是它仅适用于特定的运动类型。另一方面,尽管高维方法可以通过直接在姿势空间中采样而无需学习模型即可恢复运动,但它缺乏鲁棒性和效率。在框架内,在每个时间步上通过概率方法将低维和高维两种并行方法融合在一起。这种概率融合方法可通过专注于两种方法各自的优点并解决它们的弱点来确保提高系统的整体性能。在定性和定量比较之后,实验结果证明了该方法在跟踪一般人体运动方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号