首页> 外文期刊>Systems, Man, and Cybernetics: Systems, IEEE Transactions on >MDD-Based Method for Efficient Analysis on Phased-Mission Systems With Multimode Failures
【24h】

MDD-Based Method for Efficient Analysis on Phased-Mission Systems With Multimode Failures

机译:基于MDD的多模式故障相任务系统高效分析方法

获取原文
获取原文并翻译 | 示例

摘要

Many practical systems are phased-mission systems with multimode failures (MFPMSs) where the mission consists of multiple nonoverlapping phases of operation, and the system components may assume more than one failure mode. In MFPMSs, dependence arises among different phases and among different failure modes of the same component, which makes the reliability analysis of MFPMSs difficult. This paper proposes a new analytical method based on multivalued decision diagrams (MDDs) for the reliability analysis of nonrepairable MFPMSs. MDDs have recently been applied to the reliability analysis of single-phase systems with multiple component states. In this paper, we make the new contribution by proposing a novel way to adapt MDDs for the reliability analysis of systems with multiple phases and multimode failures. Examples show how the MDD models are generated and evaluated to obtain the mission reliability measures. Performance of the MDD-based method is compared with an existing binary decision diagram (BDD)-based method for MFPMS analysis through several examples and a comprehensive benchmark study. Empirical results show that the proposed MDD-based method can offer lower computational complexity and simpler model construction and evaluation algorithms than the BDD-based method, and it can be effectively applied to large practical cases.
机译:许多实际系统是具有多模式故障(MFPMS)的分阶段任务系统,其中任务由多个不重叠的运行阶段组成,并且系统组件可能会采用多个故障模式。在MFPMS中,同一组件的不同阶段之间以及不同故障模式之间都存在依赖性,这使得MFPMS的可靠性分析变得困难。本文提出了一种基于多值决策图(MDD)的不可修复MFPMS可靠性分析的新方法。 MDD最近已应用于具有多个组件状态的单相系统的可靠性分析。在本文中,我们通过提出一种新颖的方法来使MDD适应多相多模故障系统的可靠性分析,从而做出了新的贡献。示例显示了如何生成和评估MDD模型以获得任务可靠性度量。通过几个示例和全面的基准研究,将基于MDD的方法的性能与用于MFPMS分析的现有基于二进制决策图(BDD)的方法进行了比较。实验结果表明,与基于BDD的方法相比,基于MDD的方法可以提供较低的计算复杂度和更简单的模型构建和评估算法,并且可以有效地应用于大型实际案例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号