首页> 外文期刊>Systems, Man, and Cybernetics: Systems, IEEE Transactions on >Mobile Target Scenario Recognition Via Low-Cost Pyroelectric Sensing System: Toward a Context-Enhanced Accurate Identification
【24h】

Mobile Target Scenario Recognition Via Low-Cost Pyroelectric Sensing System: Toward a Context-Enhanced Accurate Identification

机译:通过低成本热释电传感系统进行移动目标场景识别:实现上下文增强的准确识别

获取原文
获取原文并翻译 | 示例

摘要

Distributed binary pyroelectric sensor network (PSN) is a low-cost alternative to video systems for human monitoring applications. This paper presents a PSN-based mobile target recognition system, which aims to achieve multitarget, complex scenario recognition. In this system, a novel pseudorandom visibility mode is designed for the sensor arrays to help capture statistical information of scenarios, and a sensor array fusion scheme is adopted to facilitate discriminative feature extraction. Moreover, we propose a statistical subspace representation model called probabilistic nonnegative matrix factorization (PNMF) to seek the scenario patterns rather than the object characteristics. We also further prove that our PNMF model is a generic model for NMF based algorithms. Original NMF, sparse NMF, and smooth NMF are special cases of the PNMF model. The simulation and experimental results demonstrate the advantages of our proposed method. Our system can be further developed to function as an independent facility for intelligent monitoring applications, especially under poor illumination circumstances.
机译:分布式二进制热释电传感器网络(PSN)是用于人类监控应用的视频系统的低成本替代产品。本文提出了一种基于PSN的移动目标识别系统,旨在实现多目标,复杂的场景识别。在该系统中,为传感器阵列设计了一种新型的伪随机可见性模式,以帮助捕获场景的统计信息,并采用传感器阵列融合方案来促进区分特征的提取。此外,我们提出了一种统计子空间表示模型,称为概率非负矩阵分解(PNMF),以寻找场景模式而不是对象特征。我们还进一步证明了我们的PNMF模型是基于NMF的算法的通用模型。原始NMF,稀疏NMF和平滑NMF是PNMF模型的特例。仿真和实验结果证明了该方法的优点。我们的系统可以进一步开发,以用作智能监控应用程序的独立设施,尤其是在恶劣的照明条件下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号