首页> 外文期刊>Sustainable Computing >A one-to-many traffic-oriented mm-wave wireless network-in-package interconnection architecture for multichip computing systems
【24h】

A one-to-many traffic-oriented mm-wave wireless network-in-package interconnection architecture for multichip computing systems

机译:用于多频计计算系统的一对多交通导向MM波无线网络连接互连互连架构

获取原文
获取原文并翻译 | 示例
       

摘要

High Performance Computing (HPC) platforms like blade servers consist of multiple processor chips, which may be multicore CPUs, GPUs, memory modules and other subsystems. In such memory and computation intensive systems one-to-many traffic patterns originate from cache coherency, system-level synchronization mechanisms and other control signals. However, small portions of such traffic can introduce huge local and global congestion, which significantly reduce overall performance and cause energy bottleneck unless low latency transmission is ensured by a one-to-many traffic-aware interconnection architecture. Therefore, these high performance and memory intensive multichip systems require efficient support for one-to-may traffic. Traditional metal-based Network-on-Chip (NoC) interconnection architecture is mostly designed for unicast traffic and therefore not suitable for such one-to-many traffic as it provides high-latency, power-hungry multi-hop paths. To address this issue, we propose the design of a one-to-many traffic-aware Wireless Network-in-Package (WiNiP) architecture by integrating a novel asymmetric wireless interconnection topology, a novel hybrid two-state Medium Access Control (MAC) and flow control. The proposed asymmetric topology, MAC and flow control collaborate with each other to form a low latency, one-to-many traffic-aware WiNiP interconnection architecture and increase system bandwidth with lower energy consumption. Through cycle-accurate simulator we show that the proposed topology reduces average packet latency by 47.92 % and outperforms other interconnection architectures for on and off-chip data transfer for synthetic as well as application-specific traffic patterns. (C) 2020 Elsevier Inc. All rights reserved.
机译:刀片服务器等高性能计算(HPC)平台由多个处理器芯片组成,可以是多核CPU,GPU,内存模块和其他子系统。在这种存储器和计算密集型系统中,一对多交通模式源自高速缓存一致性,系统级同步机制和其他控制信号。然而,这种交通的小部分可以引入巨大的本地和全球拥塞,这显着降低了整体性能并导致能量瓶颈,除非通过一对多交通感知互连架构确保了低延迟传输。因此,这些高性能和内存密集型多芯片系统需要有效地支持一次性流量。基于传统的基于金属的片上(NOC)互连架构主要用于单播流量,因此不适合这样一对多流量,因为它提供高延迟,耗电的多跳路径。为了解决这个问题,我们通过集成新颖的非对称无线互连拓扑,提出了一对多流量感知无线网络包装(WinIP)架构,这是一种新颖的混合式两个状态媒体访问控制(MAC)和流量控制。所提出的不对称拓扑,MAC和流量控制彼此合作,形成低延迟,一对多交通感知的WinIP互连架构,并增加能量消耗较低的系统带宽。通过循环准确的模拟器,我们表明所提出的拓扑将平均数据包延迟减少47.92%,而且为合成以及特定于应用程序特定的流量模式而优越其他互连架构。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号