首页> 外文期刊>Surface Innovations >Pd–PPy nanocomposite on the surface of carbon nanotubes: synthesis and catalytic activity
【24h】

Pd–PPy nanocomposite on the surface of carbon nanotubes: synthesis and catalytic activity

机译:碳纳米管表面上的Pd–PPy纳米复合材料:合成和催化活性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In the presence of carbon nanotubes (CNTs), palladium (Pd)–polypyrrole (PPy)@CNT nanocomposites have been synthesized by way of one-pot and one-step colloidal synthesis from a solution of a palladium inorganic salt and organic pyrrole as monomeric precursor to PPy. This efficient method leads to the growth of nanoparticles of the palladium inorganic component distributed inside a polymer matrix supported on CNTs. After characterization, palladium–PPy@CNT nanocomposites have been employed as efficient heterogeneous catalysts for direct C–H bond functionalization toward C–C bond coupling formation. The notable catalytic activity of the palladium–PPy@CNT nanocomposite decreased with successive catalytic cycles when using the same portion of the composite. This was attributed to palladium redistribution inside the PPy matrix, which occurs by way of a specific mechanism involving the reaction solvent and the composite during C–C coupling reaction. This mechanism is recrystallization of palladium nanoparticles in conductive PPy matrix. Nevertheless, the use of palladium–PPy@CNT nanocomposite in first cycle of investigated catalytic reaction facilitates C-C bond coupling formation: reaction occurs at lower temperature in comparison with homogeneous catalysts.
机译:在碳纳米管(CNTs)存在下,钯无机盐和有机吡咯为单体,通过一锅一步的胶体合成方法合成了钯(Pd)-聚吡咯(PPy)@CNT纳米复合材料PPy的前身。这种有效的方法导致分布在负载在CNT上的聚合物基质内部的钯无机组分纳米粒子的生长。经过表征后,钯-PPy @ CNT纳米复合材料已被用作有效的多相催化剂,可直接将C-H键官能化以形成C-C键耦合。当使用相同比例的复合材料时,钯-PPy @ CNT纳米复合材料的显着催化活性随连续的催化循环而降低。这归因于PPy基质内部的钯再分布,这是通过涉及C–C偶联反应的反应溶剂和复合物的特定机理而发生的。这种机理是钯纳米颗粒在导电PPy基质中的重结晶。然而,在研究的催化反应的第一个循环中使用钯-PPy @ CNT纳米复合材料有助于形成C-C键耦合:与均相催化剂相比,该反应在较低的温度下发生。

著录项

  • 来源
    《Surface Innovations》 |2017年第4期|121-129|共9页
  • 作者单位

    Engineer, Institute of Problems of Chemical Physics Russian Academy of Science, Chernogolovka, Russia;

    Mendeleev Russian Chemical Technology University, Moscow, Russia;

    Institute of Problems of Chemical Physics, Chernogolovka, Russia;

    Professor, Institut de Chimie Moléculaire de l’Université de Bourgogne – UMR 6302 CNRS – Université de Bourgogne et Franche-Comté, Dijon, France;

    Chargé de Recherches, Interdisciplinaire Carnot de Bourgogne – UMR 6303 CNRS – Université de Bourgogne et Franche-Comté, Dijon, France;

    Chemist (Specialist), M. V. Lomonosov Moscow State University, Moscow, Russia;

    University of Chemical Technology of Russia, Moscow, Russia;

    Institute of Problems of Chemical Physics, Chernogolovka, Russia;

    Institut de Chimie Moléculaire de l’Université de Bourgogne – UMR 6302 CNRS – Université de Bourgogne et Franche-Comté, Dijon, France;

    Principal Scientist, Institute of Problems of Chemical Physics Russian Academy of Science, Chernogolovka, Russia;

    Professor, M. V. Lomonosov Moscow State University, Moscow, Russia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    catalyst; hybrid materials; nanocomposites;

    机译:催化剂;混合材料纳米复合材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号