首页> 外文期刊>Studies in Informatics and Control >Development of PINN Controller for Fuel Handling System of Pressurized Heavy Water Reactors
【24h】

Development of PINN Controller for Fuel Handling System of Pressurized Heavy Water Reactors

机译:加压重水反应器燃料处理系统PINN控制器的研制

获取原文
获取原文并翻译 | 示例

摘要

The required operating pressure of the Wolsong nuclear power plant is currently controlled by a proportional integral (PI) controller. The PI controller has a simple structure and was designed to meet requirements through gain setting. However, these control requirements can be difficult to meet without properly adjusting the gain when certain parameters change, such as the wear and tear in the valves or pipes. To solve these problems, it is important to dynamically change the PI controller gain or compensate for the PI controller output. The purpose of this study is to help design a controller that is capable of providing stable control in order to reduce errors regardless of parameter changes. The proposed PI neural network (PINN) control technique involves a PI controller and a neural network controller combined in parallel. The neural network component which is designed to be robust compensates the output of the controller for changes in the above-mentioned parameters. Because assessing the controller performance straightforwardly in real-time processes can be difficult, a simulator model was developed based on real-time processes, and it showed changes in the parameters involved. The results confirmed that the proposed PINN controller reduced the instability of the fuel supply machine and, hence the aforementioned problem could be properly controlled.
机译:Wolsong核电站所需的工作压力目前由比例积分(PI)控制器控制。 PI控制器具有简单的结构,旨在通过增益设置满足要求。然而,当某些参数变化时,这些控制要求可能难以在不正确调整增益的情况下,例如阀门或管道中的磨损和撕裂。为了解决这些问题,重要的是动态地改变PI控制器增益或补偿PI控制器输出。本研究的目的是帮助设计能够提供稳定控制的控制器,以便无论参数变化如何降低误差。所提出的PI神经网络(PINN)控制技术涉及PI控制器和一个并联组合的神经网络控制器。设计为稳健的神经网络组件补偿了控制器的输出以进行上述参数的变化。因为在实时过程中直截了当地评估控制器性能可能很困难,因此基于实时过程开发了模拟器模型,并且它显示了所涉及的参数的变化。结果证实,所提出的Pinn控制器降低了燃料供应机器的不稳定性,因此可以正确控制上述问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号