首页> 外文期刊>Studies in Informatics and Control >A Big Data Framework for Mining Sensor Data Using Hadoop
【24h】

A Big Data Framework for Mining Sensor Data Using Hadoop

机译:使用Hadoop挖掘传感器数据的大数据框架

获取原文
获取原文并翻译 | 示例

摘要

The data gathered from IOTs is considered of high business value. The IOTs devices sense the natural conditions using sensor network comprised of sensor nodes. Mining of big sensor data for useful knowledge extraction is a very challenging task. Frequent itemsets is one of the most effective mining techniques that find important itemsets from big sensor data. In this paper, a MapReduce Frequent Nodesets-based Boundary POC tree (MR-FNBP) framework is proposed for mining Frequent Nodesets for big sensor data. The MapReduce framework is used to implement MR-FNBP to enhance its performance in highly distributed environments. Additionally, the proposed Boundary (FNBP) creates a Boundary as an early stage to exclude the infrequent itemsets, and this may reduce the overall memory and time usage. Moreover, a number of experiments were performed to evaluate the performance of MR-FNBP framework. The results show high scalability rate and a less time consuming process for MR-FNBP framework over different recent systems.
机译:从物联网收集的数据被认为具有很高的商业价值。物联网设备使用由传感器节点组成的传感器网络来感测自然条件。挖掘大型传感器数据以进行有用的知识提取是一项非常艰巨的任务。频繁项集是从大型传感器数据中找到重要项集的最有效的挖掘技术之一。本文提出了一种基于MapReduce频繁节点集的边界POC树(MR-FNBP)框架,用于挖掘大传感器数据的频繁节点集。 MapReduce框架用于实现MR-FNBP,以增强其在高度分布式环境中的性能。此外,建议的边界(FNBP)会创建一个边界作为早期阶段,以排除不常见的项目集,这可能会减少总体内存和时间使用量。此外,进行了许多实验以评估MR-FNBP框架的性能。结果表明,在不同的最新系统上,MR-FNBP框架具有较高的可伸缩性和较少的耗时过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号