首页> 外文期刊>Structural and Multidisciplinary Optimization >Honeycomb Wachspress finite elements for structural topology optimization
【24h】

Honeycomb Wachspress finite elements for structural topology optimization

机译:蜂窝Wachspress有限元用于结构拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, standard Lagrangian-type finite elements, such as linear quads and triangles, have been the elements of choice in the field of topology optimization. However, finite element meshes with these conventional elements exhibit the well-known “checkerboard” pathology in the iterative solution of topology optimization problems. A feasible alternative to eliminate such long-standing problem consists of using hexagonal (honeycomb) elements with Wachspress-type shape functions. The features of the hexagonal mesh include two-node connections (i.e. two elements are either not connected or connected by two nodes), and three edge-based symmetry lines per element. In contrast, quads can display one-node connections, which can lead to checkerboard; and only have two edge-based symmetry lines. In addition, Wachspress rational shape functions satisfy the partition of unity condition and lead to conforming finite element approximations. We explore the Wachspress-type hexagonal elements and present their implementation using three approaches for topology optimization: element-based, continuous approximation of material distribution, and minimum length-scale through projection functions. Examples are presented that demonstrate the advantages of the proposed element in achieving checkerboard-free solutions and avoiding spurious fine-scale patterns from the design optimization process.
机译:传统上,标准的拉格朗日型有限元,例如线性四边形和三角形,已成为拓扑优化领域中的首选元素。但是,使用这些常规元素的有限元网格在拓扑优化问题的迭代解决方案中表现出众所周知的“棋盘格”病理。消除此类长期存在的问题的可行替代方案包括使用具有Wachspress型形状函数的六边形(蜂窝)元素。六角形网格的特征包括两个节点的连接(即两个元素未连接或未通过两个节点连接),以及每个元素三条基于边缘的对称线。相反,四边形可以显示单节点连接,这可以导致棋盘格。并且只有两条基于边缘的对称线。此外,Wachspress有理形状函数满足单位条件的划分并导致一致的有限元逼近。我们探索了Wachspress型六角形元素,并使用三种用于拓扑优化的方法介绍了它们的实现:基于元素的,材料分布的连续近似以及通过投影函数的最小长度尺度。给出了一些示例,这些示例演示了所提出的元素在实现无棋盘解决方案以及避免设计优化过程中出现虚假的小规模图案方面的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号