首页> 外文期刊>Structural and Multidisciplinary Optimization >pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization
【24h】

pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization

机译:pyOpt:用于非线性约束优化的基于Python的面向对象框架

获取原文
获取原文并翻译 | 示例

摘要

We present pyOpt, an object-oriented framework for formulating and solving nonlinear constrained optimization problems in an efficient, reusable and portable manner. The framework uses object-oriented concepts, such as class inheritance and operator overloading, to maintain a distinct separation between the problem formulation and the optimization approach used to solve the problem. This creates a common interface in a flexible environment where both practitioners and developers alike can solve their optimization problems or develop and benchmark their own optimization algorithms. The framework is developed in the Python programming language, which allows for easy integration of optimization software programmed in Fortran, C, C+ +, and other languages. A variety of optimization algorithms are integrated in pyOpt and are accessible through the common interface. We solve a number of problems of increasing complexity to demonstrate how a given problem is formulated using this framework, and how the framework can be used to benchmark the various optimization algorithms.
机译:我们提出了pyOpt,这是一种面向对象的框架,用于以有效,可重用和可移植的方式来制定和解决非线性约束的优化问题。该框架使用面向对象的概念(例如类继承和运算符重载)在问题表述和用于解决问题的优化方法之间保持明显的分离。这在灵活的环境中创建了一个公共界面,从业人员和开发人员都可以解决他们的优化问题,或者开发和确定自己的优化算法。该框架以Python编程语言开发,可轻松集成以Fortran,C,C ++和其他语言编程的优化软件。各种优化算法都集成在pyOpt中,可以通过通用接口进行访问。我们解决了许多日益复杂的问题,以演示如何使用此框架解决给定的问题,以及如何使用该框架对各种优化算法进行基准测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号