首页> 外文期刊>Structural and Multidisciplinary Optimization >Worst-case topology optimization of self-weight loaded structures using semi-definite programming
【24h】

Worst-case topology optimization of self-weight loaded structures using semi-definite programming

机译:使用半定规划的自重结构的最坏情况拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

The paper concerns worst-case compliance optimization by finding the structural topology with minimum compliance for the loading due to the worst possible acceleration of the structure and attached non-structural masses. A main novelty of the paper is that it is shown how this min-max problem can be formulated as a non-linear semi-definite programming (SDP) problem involving a small-size constraint matrix and how this problem is solved numerically. Our SDP formulation is an extension of an eigenvalue problem seen previously in the literature; however, multiple eigenvalues naturally arise which makes the eigenvalue problem non-smooth, whereas the SDP problem presented in this paper provides a computationally tractable problem. Optimized designs, where the uncertain loading is due to acceleration of applied masses and the weight of the structure itself, are shown in two and three dimensions and we show that these designs satisfy optimality conditions that are also presented.
机译:本文关注最坏情况下的顺应性优化,因为结构和附着的非结构体质量可能会以最差的加速度出现,从而找到对载荷的顺应性最小的结构拓扑。本文的主要新颖之处在于,它展示了如何将这个最小-最大问题公式化为涉及小约束矩阵的非线性半定规划(SDP)问题,以及如何以数值方式解决该问题。我们的SDP公式是先前文献中所见的特征值问题的扩展;但是,自然会产生多个特征值,这使得特征值问题变得不平滑,而本文中提出的SDP问题提供了一个易于计算的问题。在二维和三维图中显示了优化设计,其中不确定载荷是由于施加的质量的加速度和结构本身的重量而导致的,我们证明了这些设计满足了所提出的最优性条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号