首页> 外文期刊>Structural Control and Health Monitoring >Bridge influence line identification based on adaptive B-spline basis dictionary and sparse regularization
【24h】

Bridge influence line identification based on adaptive B-spline basis dictionary and sparse regularization

机译:基于自适应B样条字典和稀疏正则化的桥梁影响线识别

获取原文
获取原文并翻译 | 示例

摘要

Bridge influence line (BIL) is a promising tool for the real applications in the fields of bridge weight-in-motion (BWIM), model updating, damage identification, and load carrying capacity evaluation. The key of such applications is how to obtain the accurate results of BIL. To accurately identify BIL based on bridge dynamic responses induced by a moving vehicle, two critical problems, including how to construct a general representation function of BIL and how to deal with the ill-posed inverse problem, should be properly resolved. This paper proposes a novel approach based on the adaptive B-spline basis dictionary and sparse regularization technique for BIL identification. A representation of basis function is first established to construct BIL, and then integrated with a redundant B-spline basis dictionary to ensure the sparsity of solution. A curvature-based adaptive node optimization method is proposed to automatically adjust the spatial arrangement of nodes according to the shape of BILs. Numerical and experimental validations are conducted to verify the accuracy and robustness of the proposed approach. The identified BIL results are accurate, indicating that the proposed node-adaptive optimization and sparse regularization techniques are effective to improve the quality of BIL identification. It is also shown that the proposed approach is not sensitive to the noise interference and configuration of testing vehicle. Through the robustness testing, it is proved that the proposed approach has the merits of high accuracy and strong robustness.
机译:桥梁影响线(BIL)是一个有前途的工具,用于桥梁体重(BWIM),模型更新,损坏识别和承载能力评估领域的真实应用。此类应用程序的关键是如何获得BIL的准确结果。为了基于移动车辆引起的桥梁动态响应,准确识别BIL,应该正确解决两个关键问题,包括如何构建BIL的一般表示功能以及如何处理不良反问题的常规表示功能。本文提出了一种基于自适应B样条字典和稀疏正则化技术的新方法。首先建立基础函数的表示,以构造成立,然后与冗余B样条字典集成,以确保解决方案的稀疏性。提出了一种基于曲率的自适应节点优化方法,以根据BIL的形状自动调节节点的空间排列。进行数值和实验验证以验证所提出的方法的准确性和鲁棒性。所识别的BIL结果是准确的,表明所提出的节点适应性优化和稀疏正则化技术有效地提高了BIL识别的质量。还表明该方法对测试车辆的噪声干扰和配置不敏感。通过稳健性测试,证明了所提出的方法具有高精度和强大的鲁棒性的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号