首页> 外文期刊>Statistics and computing >A two-stage Bayesian semiparametric model for novelty detection with robust prior information
【24h】

A two-stage Bayesian semiparametric model for novelty detection with robust prior information

机译:具有稳健事先信息的新奇检测的两阶段贝叶斯半导体模型

获取原文
获取原文并翻译 | 示例

摘要

Novelty detection methods aim at partitioning the test units into already observed and previously unseen patterns. However, two significant issues arise: there may be considerable interest in identifying specific structures within the novelty, and contamination in the known classes could completely blur the actual separation between manifest and new groups. Motivated by these problems, we propose a two-stage Bayesian semiparametric novelty detector, building upon prior information robustly extracted from a set of complete learning units. We devise a general-purpose multivariate methodology that we also extend to handle functional data objects. We provide insights on the model behavior by investigating the theoretical properties of the associated semiparametric prior. From the computational point of view we, propose, a suitable xi: xi-sequence to construct an independent slice-efficient sampler that takes into account the difference between manifest and novelty components. We showcase our model performance through an extensive simulation study and applications on both multivariate and functional datasets, in which diverse and distinctive unknown patterns are discovered.
机译:新颖性检测方法旨在将测试单元分区,以观察到并以前看不见的图案。但是,出现了两个重要的问题:对识别新颖性内的特定结构可能具有相当大的兴趣,并且已知类别中的污染可以完全模糊出现和新群体之间的实际分离。通过这些问题的动机,我们提出了一个两级贝叶斯半导体新颖性探测器,在现有信息从一组完整的学习单位中提取的先前信息时建立。我们设计了一种通用多变量方法,我们还扩展到处理功能数据对象。通过研究相关半导体的理论特性,我们通过研究相关半导体的理论属性来提供对模型行为的见解。从计算的观点来看,我们提出的,一个合适的Xi:Xi-序列来构建一个独立的切片有效的采样器,考虑了清单和新颖组件之间的差异。我们通过广泛的仿真研究和多变量和功能数据集的应用来展示我们的模型性能,其中发现了多种和独特的未知模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号