首页> 外文期刊>Statistics and computing >A fast and efficient smoothing approach to Lasso regression and an application in statistical genetics: polygenic risk scores for chronic obstructive pulmonary disease (COPD)
【24h】

A fast and efficient smoothing approach to Lasso regression and an application in statistical genetics: polygenic risk scores for chronic obstructive pulmonary disease (COPD)

机译:卢索回归的快速有效的平滑方法和统计遗传学中的应用:慢性阻塞性肺病的多基因风险评分(COPD)

获取原文
获取原文并翻译 | 示例

摘要

High dimensional linear regression problems are often fitted using Lasso approaches. Although the Lasso objective function is convex, it is not differentiable everywhere, making the use of gradient descent methods for minimization not straightforward. To avoid this technical issue, we apply Nesterov smoothing to the original (unsmoothed) Lasso objective function. We introduce a closed-form smoothed Lasso which preserves the convexity of the Lasso function, is uniformly close to the unsmoothed Lasso, and allows us to obtain closed-form derivatives everywhere for efficient and fast minimization via gradient descent. Our simulation studies are focused on polygenic risk scores using genetic data from a genome-wide association study (GWAS) for chronic obstructive pulmonary disease (COPD). We compare accuracy and runtime of our approach to the current gold standard in the literature, the FISTA algorithm. Our results suggest that the proposed methodology provides estimates with equal or higher accuracy than the FISTA algorithm while having the same asymptotic runtime scaling. The proposed methodology is implemented in the R-package smoothedLasso, available on the Comprehensive R Archive Network (CRAN).
机译:高维线性回归问题通常使用套索方法安装。虽然套索目标函数是凸的,但到处都不差,这使得利用梯度下降方法以最小化不直接化。为避免此技术问题,我们将Nesterov平滑应用于原始(未平滑)的套索目标函数。我们引入了一个封闭式平滑的套索,它保留了套索功能的凸起,均匀地靠近未平滑的套索,并且我们允许我们通过梯度下降获得所在位置的闭合衍生物,以便通过梯度下降获得高效和快速的最小化。我们的仿真研究专注于使用来自基因组关联研究(GWAS)的遗传数据进行慢性阻塞性肺病(COPD)的多基因风险分数。我们比较了我们在文献中当前黄金标准的准确性和运行时间,Fista算法。我们的研究结果表明,所提出的方法提供了与Fista算法相同或更高的精度等于或更高的估计,同时具有相同的渐近运行时缩放。所提出的方法在R-Package Smoothedlasso中实现,可在全面的R存档网络(CRAN)上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号