首页> 外文期刊>Statistics and computing >A novel Bayesian approach for latent variable modeling from mixed data with missing values
【24h】

A novel Bayesian approach for latent variable modeling from mixed data with missing values

机译:一种新的贝叶斯方法,用于缺失值的混合数据潜在变量建模

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of learning parameters of latent variable models from mixed (continuous and ordinal) data with missing values. We propose a novel Bayesian Gaussian copula factor (BGCF) approach that is proven to be consistent when the data are missing completely at random (MCAR) and that is empirically quite robust when the data are missing at random, a less restrictive assumption than MCAR. In simulations, BGCF substantially outperforms two state-of-the-art alternative approaches. An illustration on the 'Holzinger & Swineford 1939' dataset indicates that BGCF is favorable over the so-called robust maximum likelihood.
机译:我们考虑使用缺失值的混合(连续和序号)数据的潜变模型的学习参数的问题。我们提出了一种新颖的贝叶斯高斯Copula因子(BGCF)方法,被证明是一致的,当数据随机(MCAR)缺失时,当数据随机缺少时,在虚拟上是非常强大的,这是比MCAR更少的限制性假设。在仿真中,BGCF基本上优于两种最先进的替代方法。 'holzinger&swineford 1939'数据集上的插图表示BGCF对所谓的强大最大可能性有利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号