首页> 外文期刊>Statistics and computing >Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models
【24h】

Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models

机译:Markov Chain Monte Carlo方法的平行算法在潜在空间高斯模型中的方法

获取原文
获取原文并翻译 | 示例

摘要

Markov chain Monte Carlo (MCMC) implementations of Bayesian inference for latent spatial Gaussian models are very computationally intensive, and restrictions on storage and computation time are limiting their application to large problems. Here we propose various parallel MCMC algorithms for such models. The algorithms' performance is discussed with respect to a simulation study, which demonstrates the increase in speed with which the algorithms explore the posterior distribution as a function of the number of processors. We also discuss how feasible problem size is increased by use of these algorithms.
机译:Markov Chain Monte Carlo(MCMC)贝叶斯高斯模型的贝叶斯推理的实施非常重要,并且对存储和计算时间的限制将其应用于大问题。在这里,我们提出了这种模型的各种并行MCMC算法。关于模拟研究讨论了算法的性能,这表明算法随着处理器数量探讨了算法探索后部分布的速度的增加。我们还讨论如何通过使用这些算法来增加可行的问题大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号