首页> 外文期刊>Statistics and computing >Fast automatic Bayesian cubature using lattice sampling
【24h】

Fast automatic Bayesian cubature using lattice sampling

机译:使用晶格采样的快速自动贝叶斯培养皿

获取原文
获取原文并翻译 | 示例

摘要

Automatic cubatures approximate integrals to user-specified error tolerances. For high-dimensional problems, it is difficult to adaptively change the sampling pattern, but one can automatically determine the sample size, n, given a reasonable, fixed sampling pattern. We take this approach here using a Bayesian perspective. We postulate that the integrand is an instance of a Gaussian stochastic process parameterized by a constant mean and a covariance kernel defined by a scale parameter times a parameterized function specifying how the integrand values at two different points in the domain are related. These hyperparameters are inferred or integrated out using integrand values via one of three techniques: empirical Bayes, full Bayes, or generalized cross-validation. The sample size, n, is increased until the half-width of the credible interval for the Bayesian posterior mean is no greater than the error tolerance. The process outlined above typically requires a computational cost of O( N(opt)n(3)), where N-opt is the number of optimization steps required to identify the hyperparameters. Our innovation is to pair low discrepancy nodes with matching covariance kernels to lower the computational cost to O(N(opt)n log n). This approach is demonstrated explicitly with rank-1 lattice sequences and shift-invariant kernels. Our algorithm is implemented in the Guaranteed Automatic Integration Library (GAIL).
机译:自动培养瓶将积分近似为用户指定的误差容限。对于高维问题,很难自适应地更改采样模式,但是在合理的固定采样模式下,可以自动确定样本大小n。我们在这里使用贝叶斯角度来采用这种方法。我们假设被积物是高斯随机过程的一个实例,该过程由常数均值和比例参数定义的协方差内核乘以一个参数化函数,该函数指定了域中两个不同点上的被积物值如何相关。这些超参数可以通过以下三种技术之一使用被积值推导或积分出来:经验贝叶斯,全贝叶斯或广义交叉验证。增大样本大小n,直到贝叶斯后验均值的可信区间的半宽度不大于误差容限为止。上面概述的过程通常需要O(N(opt)n(3))的计算成本,其中N-opt是识别超参数所需的优化步骤数。我们的创新是将低差异节点与匹配的协方差内核配对,以将计算成本降低到O(N(opt)n log n)。该方法已通过1级晶格序列和不变位移核得到了明确证明。我们的算法在保证自动集成库(GAIL)中实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号