首页> 外文期刊>Statistics and computing >Stability of feature selection in classification issues for high-dimensional correlated data
【24h】

Stability of feature selection in classification issues for high-dimensional correlated data

机译:高维相关数据分类问题中特征选择的稳定性

获取原文
获取原文并翻译 | 示例

摘要

Handling dependence or not in feature selection is still an open question in supervised classification issues where the number of covariates exceeds the number of observations. Some recent papers surprisingly show the superiority of naive Bayes approaches based on an obviously erroneous assumption of independence, whereas others recommend to infer on the dependence structure in order to decorrelate the selection statistics. In the classical linear discriminant analysis (LDA) framework, the present paper first highlights the impact of dependence in terms of instability of feature selection. A second objective is to revisit the above issue using a flexible factor modeling for the covariance. This framework introduces latent components of dependence, conditionally on which a new Bayes consistency is defined. A procedure is then proposed for the joint estimation of the expectation and variance parameters of the model. The present method is compared to recent regularized diagonal discriminant analysis approaches, assuming independence among features, and regularized LDA procedures, both in terms of classification performance and stability of feature selection. The proposed method is implemented in the R package FADA, freely available from the R repository CRAN.
机译:在协变量数量超过观察数量的监督分类问题中,处理特征选择是否依赖仍然是一个悬而未决的问题。最近的一些论文出人意料地显示了基于明显错误的独立性假设的朴素贝叶斯方法的优越性,而另一些论文则建议推断依赖性结构以重新关联选择统计。在经典的线性判别分析(LDA)框架中,本文首先从特征选择的不稳定性方面突出了依赖性的影响。第二个目标是使用针对协方差的灵活因子模型来重新审视上述问题。该框架引入了潜在的依赖组件,有条件地定义了新的贝叶斯一致性。然后提出了一个程序,用于联合估计模型的期望和方差参数。在分类性能和特征选择的稳定性方面,将本方法与最近的正规化对角线判别分析方法进行比较,假设特征之间具有独立性,并且采用正规化LDA程序。所提出的方法在R包FADA中实现,可从R存储库CRAN免费获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号