首页> 外文期刊>Statistical science >Laplace Approximated EM Microarray Analysis: An Empirical Bayes Approach for Comparative Microarray Experiments
【24h】

Laplace Approximated EM Microarray Analysis: An Empirical Bayes Approach for Comparative Microarray Experiments

机译:Laplace近似EM芯片分析:用于比较芯片实验的经验贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

A two-groups mixed-effects model for the comparison of (normalized) microarray data from two treatment groups is considered. Most competing parametric methods that have appeared in the literature are obtained as special cases or by minor modification of the proposed model. Approximate maximum likelihood fitting is accomplished via a fast and scalable algorithm, which we call LEMMA (Laplace approximated EM Microarray Analysis). The posterior odds of treatment × gene interactions, derived from the model, involve shrinkage estimates of both the interactions and of the gene specific error variances. Genes are classified as being associated with treatment based on the posterior odds and the local false discovery rate (f.d.r.) with a fixed cutoff. Our model-based approach also allows one to declare the non-null status of a gene by controlling the false discovery rate (FDR). It is shown in a detailed simulation study that the approach outperforms well-known competitors. We also apply the proposed methodology to two previously analyzed microarray examples. Extensions of the proposed method to paired treatments and multiple treatments are also discussed.
机译:考虑了两个混合效应模型,用于比较两个治疗组的(标准化)微阵列数据。文献中出现的大多数竞争性参数方法都是作为特殊情况或通过对所提议模型进行的较小修改而获得的。近似最大似然拟合是通过一种快速且可扩展的算法来完成的,该算法称为LEMMA(拉普拉斯近似EM微阵列分析)。从模型得出的治疗×基因相互作用的后验几率涉及相互作用和基因特异性误差方差的缩减估计。根据后验几率和具有固定截止值的局部错误发现率(f.d.r.),将基因分类为与治疗相关。我们基于模型的方法还允许通过控制错误发现率(FDR)声明基因的非无效状态。在详细的模拟研究中表明,该方法优于知名竞争对手。我们还将提议的方法应用于两个先前分析的微阵列实例。还讨论了将建议的方法扩展到配对治疗和多种治疗的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号