首页> 外文期刊>Statistical Methods and Applications >Influence function-based empirical likelihood and generalized confidence intervals for the Lorenz curve
【24h】

Influence function-based empirical likelihood and generalized confidence intervals for the Lorenz curve

机译:影响基于功能的经验似然和Lorenz曲线的广义置信区间

获取原文
获取原文并翻译 | 示例

摘要

This paper aims to solve confidence interval estimation problems for the Lorenz curve. First, we propose new nonparametric confidence intervals using the influence function-based empirical likelihood method. We show that the limiting distributions of the empirical log-likelihood ratio statistics for the Lorenz ordinates are standard chi-square distributions. We also develop "exact" parametric intervals for the Lorenz ordinate based on generalized pivotal quantities when the underlying income distribution is a Pareto distribution or a Lognormal distribution. Extensive simulation studies are conducted to evaluate the finite sample performances of the proposed methods. Finally, we apply our methods to a real income dataset.
机译:本文旨在解决Lorenz曲线的置信区间估计问题。首先,我们用基于影响功能的经验似然方法提出新的非参数置信区间。我们表明,Lorenz坐标的经验日志似然比统计数据的限制分布是标准的Chi-Square分布。当潜在的收入分配是帕雷托分布或伐诺型分布时,我们还基于广义枢转量为Lorenz纵坐标制定“精确”参数间隔。进行广泛的仿真研究以评估所提出的方法的有限样本性能。最后,我们将方法应用于真正的收入数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号