首页> 外文期刊>Statistical Methodology >Local Asymptotic Normality For Bifurcating Autoregressive Processes And Related Asymptotic Inference
【24h】

Local Asymptotic Normality For Bifurcating Autoregressive Processes And Related Asymptotic Inference

机译:分叉自回归过程的局部渐近正态性及相关渐近推断

获取原文
获取原文并翻译 | 示例

摘要

This article is concerned with the local asymptotic normality (LAN) of the log-likelihood for the bifurcating autoregressive model (BAR) for tree structured data where each individual in one generation gives rise to two off-spring in the next generation. We derive the LAN property for the pth-order BAR model. Asymptotic optimal inference for the model parameters can be deduced as a consequence of LAN. In particular, an efficient score test is derived as an application. A simulation study is conducted to address the issue regarding how many generations are required for asymptotic results to be useful in practice.
机译:本文涉及树形结构数据的分叉自回归模型(BAR)的对数似然对数似然的局部渐近正态性(LAN),其中一代中的每个个体在下一代中产生两个后代。我们推导了p阶BAR模型的LAN属性。 LAN的结果可以得出模型参数的渐近最优推论。尤其是,将有效的分数测试作为应用程序导出。进行模拟研究以解决关于渐近结果在实践中有用需要多少代的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号