首页> 外文期刊>Statistical Methodology >Bayesian inference for Poisson and multinomial log-linear models
【24h】

Bayesian inference for Poisson and multinomial log-linear models

机译:泊松和多项式对数线性模型的贝叶斯推断

获取原文
获取原文并翻译 | 示例

摘要

Categorical data frequently arise in applications in the Social Sciences. In such applications, the class of log-linear models, based on either a Poisson or (product) multinomial response distribution, is a flexible model class for inference and prediction. In this paper we consider the Bayesian analysis of both Poisson and multinomial log-linear models. It is often convenient to model multinomial or product multinomial data as observations of independent Poisson variables. For multinomial data, Lindley (1964) [20] showed that this approach leads to valid Bayesian posterior inferences when the prior density for the Poisson cell means factorises in a particular way. We develop this result to provide a general framework for the analysis of multinomial or product multinomial data using a Poisson log-linear model. Valid finite population inferences are also available, which can be particularly important in modelling social data. We then focus particular attention on multivariate normal prior distributions for the log-linear model parameters. Here, an improper prior distribution for certain Poisson model parameters is required for valid multinomial analysis, and we derive conditions under which the resulting posterior distribution is proper. We also consider the construction of prior distributions across models, and for model parameters, when uncertainty exists about the appropriate form of the model. We present classes of Poisson and multinomial models, invariant under certain natural groups of permutations of the cells. We demonstrate that, if prior belief concerning the model parameters is also invariant, as is the case in a 'reference' analysis, then the choice of prior distribution is considerably restricted. The analysis of multivariate categoricalrndata in the form of a contingency table is considered in detail. We illustrate the methods with two examples.
机译:分类数据经常出现在社会科学的应用中。在此类应用中,基于泊松或(乘积)多项式响应分布的对数线性模型类别是用于推理和预测的灵活模型类别。在本文中,我们考虑了泊松模型和多项式对数线性模型的贝叶斯分析。通常将多项式或乘积多项式数据建模为独立泊松变量的观测值很方便。对于多项式数据,Lindley(1964)[20]表明,当泊松单元的先验密度以特定方式分解时,这种方法会导致有效的贝叶斯后验推断。我们开发此结果,以提供使用泊松对数线性模型分析多项式或乘积多项式数据的通用框架。还可以使用有效的有限总体推断,这在建模社会数据时尤其重要。然后,我们特别关注对数线性模型参数的多元正态先验分布。在这里,某些泊松模型参数的不正确的先验分布对于有效的多项式分析是必需的,并且我们推导了所得后验分布正确的条件。当模型的适当形式存在不确定性时,我们还将考虑模型之间的先验分布的构造以及模型参数的构造。我们提出了泊松模型和多项式模型,它们在细胞排列的某些自然组下是不变的。我们证明,如果关于模型参数的先验信念也是不变的,就像“参考”分析中的情况一样,那么先验分布的选择就受到很大限制。详细考虑了列联表形式的多元分类数据分析。我们用两个例子来说明这些方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号