首页> 外文期刊>Spatial cognition and computation >Spatio-Temporal Analytics for Exploring Human Mobility Patterns and Urban Dynamics in the Mobile Age
【24h】

Spatio-Temporal Analytics for Exploring Human Mobility Patterns and Urban Dynamics in the Mobile Age

机译:时空分析,探索移动时代的人类出行方式和城市动态

获取原文
获取原文并翻译 | 示例

摘要

In this research, we present a spatio-temporal analytical framework including spatio-temporal visualization (STV), space-time kernel density estimation (STKDE), and spatio-temporal-autocorrelation-analysis (STAA), to explore human mobility patterns and intra-urban communication dynamics. Experiments were conducted using large-scale detailed records of mobile phone calls in a city. The space-time path, time series graphs, vertical Bezier curves, STKDE, STAA, and related techniques in 3D GIS as well as statistical tests have been suggested for different spatio-temporal analysis tasks. We also investigated several statistical measures that extend the classic spatial association indices for spatio-temporal autocorrelation analysis. The spatial order of weighted matrix was found to have more significant effects than the temporal neighbors on influencing the autocorrelation strength of hourly phone calls.
机译:在这项研究中,我们提出了一个时空分析框架,包括时空可视化(STV),时空核密度估计(STKDE)和时空自相关分析(STAA),以探索人类的流动模式和内部-城市交流动态。使用城市中大型移动电话的详细记录进行了实验。对于不同的时空分析任务,已经提出了时空路径,时间序列图,垂直贝塞尔曲线,STKDE,STAA和3D GIS中的相关技术以及统计测试。我们还研究了一些扩展时空自相关分析的经典空间关联指数的统计方法。发现加权矩阵的空间顺序在影响每小时电话的自相关强度方面,比时间邻域具有更大的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号