首页> 外文期刊>Soil Dynamics and Earthquake Engineering >Model-data fusion for spatial and statistical characterization of soil parameters from geophysical measurements
【24h】

Model-data fusion for spatial and statistical characterization of soil parameters from geophysical measurements

机译:模型数据融合,用于通过地球物理测量对土壤参数进行空间和统计表征

获取原文
获取原文并翻译 | 示例

摘要

A recently developed PDE-constrained stochastic inverse analysis algorithm for spatial and statistical characterization of soil parameters from geophysical measurements, considering uncertainty due to limited measurements and sensor noise, is exemplified and validated. A 60m x 60 m geotechnical site in Garner Valley, CA is used as the validation testbed. Advanced geophysical test measurements - in terms of velocity waveforms at a few locations on the surface due to surface excitations using a mobile shaker - are available for the site. The algorithm inversely analyzes the available measurements to probabilistically estimate the elastic parameters of the soil at the site up to a depth of 40 m. The algorithm relies on (1) hypothesizing the soil parameters to be heterogeneous, anisotropic random fields, (2) making prior assumptions on them, (3) numerically simulating the geophysical experiment using the finite element method in conjunction with a stochastic collocation approach, and (4) fusing simulated measurements with experimental measurements using a minimum variance framework to update the prior assumptions on the soil parameter random fields. The estimated elastic parameters of the soil are presented in terms of marginal mean and marginal standard deviation profiles of the soil's P- and S-wave velocities as well as their correlation structures in the x-, y-, and z-direction. In ascertaining the accuracy of the inverse analysis algorithm, the geophysical experiment is numerically re-simulated with the estimated P- and S-wave velocity profiles and the model predicted velocity waveforms are compared against the field observations at all the measurement locations. Comments are made at appropriate places regarding several aspects of the algorithm in highlighting the lessons learned through this validation effort towards accurate stochastic full waveform inversion of geophysical measurements.
机译:举例说明并验证了最近开发的PDE约束随机反分析算法,该算法用于从地球物理测量中对土壤参数进行空间和统计表征,同时考虑到由于有限的测量和传感器噪声而引起的不确定性。加利福尼亚加纳河谷一个60m x 60 m的岩土工地被用作验证测试台。对于现场,可以进行高级地球物理测试测量-在地面上几个位置的速度波形,这是由于使用移动摇床进行的表面激励所致。该算法对可用的测量结果进行反分析,以概率方式估计场地中40 m深度处的土壤弹性参数。该算法依赖于(1)假设土壤参数是非均质的各向异性随机场,(2)对它们进行先验假设,(3)使用有限元方法结合随机配置方法对地球物理实验进行数值模拟,以及(4)使用最小方差框架将模拟测量值与实验测量值融合,以更新对土壤参数随机场的先前假设。根据土壤的P波和S波速度的边际均值和边际标准偏差图以及它们在x方向,y方向和z方向上的相关结构来表示估计的土壤弹性参数。为了确定反分析算法的准确性,使用估计的P波和S波速度剖面对地球物理实验进行了数值模拟,并将模型预测的速度波形与所有测量位置处的现场观测值进行了比较。在算法的几个方面,在适当的位置上进行了注释,以突出显示通过此验证工作而获得的经验教训,这些经验是对地球物理测量结果进行准确的随机全波形反演的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号