首页> 外文期刊>Software Testing, Verification and Reliability >Reducing the maintenance effort for parameterization of representative load tests using annotations
【24h】

Reducing the maintenance effort for parameterization of representative load tests using annotations

机译:减少使用注释对代表性负载测试进行参数化的维护工作

获取原文
获取原文并翻译 | 示例

摘要

Directly affecting the user experience, performance is a crucial aspect of today's software applications. Representative load testing allows to effectively test and preserve the performance before delivery by mimicking the actually expected workload. In the literature, various approaches have been proposed for extracting representative load tests from recorded user sessions. However, these approaches require manual parameterization for specifying input data and adjusting static properties such as a request's domain name. This manual effort accumulates when load tests need to be updated due to changing production workloads and APIs. In this paper, we address the reduction of the maintenance effort for representative load testing. We introduce input data and properties annotations (IDPAs) that store manual parameterizations and can be evolved automatically. Experts only have to parameterize extracted load tests initially. For dealing with API changes, we develop approaches to evolve IDPAs for the types of changes described in the literature. We evaluated our approach in two experimental studies, by deriving effort estimation models, and in an industrial case study including four different software projects. Our evaluation shows that IDPAs can parameterize generated load tests for restoring the representativeness, especially for applications with workloads dominated by request orders and rates. The maintenance effort can be reduced from a quadratic cumulative effort over time to a linear cumulative effort for a typical mix of API changes. Furthermore, we were able to express all parameterizations required by the industrial projects using the IDPA but also had to integrate extensions using the provided extension mechanisms.
机译:性能直接影响用户体验,是当今软件应用程序的关键方面。代表性的负载测试允许通过模仿实际预期的工作负载来在交付之前有效地测试和保留性能。在文献中,已经提出了各种方法来从记录的用户会话中提取代表性的负载测试。但是,这些方法需要手动进行参数化,以指定输入数据并调整静态属性(例如请求的域名)。由于生产工作负载和API不断变化,需要更新负载测试时,会花费大量精力。在本文中,我们致力于减少代表性负载测试的维护工作量。我们引入了输入数据和属性注释(IDPA),这些数据和属性注释存储了手动参数化并且可以自动进行演化。专家只需要最初对提取的负载测试进行参数化。为了处理API更改,我们针对文献中描述的更改类型开发了针对IDPA进行演变的方法。我们通过推导工作量估算模型在两个实验研究中以及在包括四个不同软件项目的工业案例研究中评估了我们的方法。我们的评估表明,IDPA可以对生成的负载测试进行参数化,以恢复代表性,尤其是对于工作负载由请求顺序和费率主导的应用程序。对于API更改的典型混合,维护工作量可以从一段时间内的二次累积工作量减少到线性累积工作量。此外,我们能够使用IDPA来表达工业项目所需的所有参数化,而且还必须使用提供的扩展机制来集成扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号