首页> 外文期刊>Software Testing, Verification and Reliability >A practical model-based statistical approach for generating functional test cases: application in the automotive industry
【24h】

A practical model-based statistical approach for generating functional test cases: application in the automotive industry

机译:一种实用的基于模型的统计方法来生成功能测试用例:在汽车行业中的应用

获取原文
获取原文并翻译 | 示例

摘要

With the growing complexity of industrial software applications, industrials are looking for efficient and practical methods to validate the software. This paper develops a model-based statistical testing approach that automatically generates online and offline test cases for embedded software. It discusses an integrated framework that combines solutions for three major software testing research questions: (i) how to select test inputs; (ii) how to predict the expected results of a test; and (iii) when to stop testing software. The automatic selection of test inputs is based on a stochastic test model that accounts for the main particularity of embedded software: time sensitivity. Software test practitioners may design one or more test models when they generate random, user-oriented, or fault-oriented test inputs. A formal framework integrating existing and appropriate specification techniques was developed for the design of automated test oracles (executable software specifications) and the formal measurement of functional coverage. The decision to stop testing software is based on both test coverage objectives and cost constraints. This approach was tested on two representative case studies from the automotive industry. The experiment was performed at unit testing level in a simulated environment on a host personal computer (automatic test execution). The two software functionalities tested had previously been unit tested and validated using the test design approach conventionally used in the industry. Applying the proposed model-based statistical testing approach to these two case studies, we obtained significant improvements in performing functional unit testing in a real and complex industrial context: more bugs were detected earlier and in a shorter time. Copyright © 2012 John Wiley & Sons, Ltd.
机译:随着工业软件应用程序日益复杂,工业界正在寻找有效且实用的方法来验证软件。本文开发了一种基于模型的统计测试方法,该方法可自动为嵌入式软件生成在线和离线测试用例。它讨论了一个集成框架,该框架结合了针对三个主要软件测试研究问题的解决方案:(i)如何选择测试输入; (ii)如何预测测试的预期结果; (iii)何时停止测试软件。测试输入的自动选择基于一个随机测试模型,该模型说明了嵌入式软件的主要特殊性:时间敏感性。当软件测试从业人员生成随机的,面向用户的或面向故障的测试输入时,他们可以设计一个或多个测试模型。开发了一个集成了现有技术和适当规范技术的正式框架,用于自动测试Oracle的设计(可执行软件规范)和功能覆盖范围的正式衡量。停止测试软件的决定基于测试覆盖率目标和成本约束。在来自汽车行业的两个代表性案例研究中对该方法进行了测试。该实验是在主机上的模拟环境中以单元测试级别执行的(自动测试执行)。被测试的两个软件功能先前已使用行业中常规使用的测试设计方法进行了单元测试和验证。将提议的基于模型的统计测试方法应用于这两个案例研究,我们在实际和复杂的工业环境中执行功能单元测试方面获得了显着改进:可以在更短的时间内更早地发现更多的错误。版权所有©2012 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号