首页> 外文期刊>IEEE Transactions on Software Engineering >Predicting fault-prone software modules in telephone switches
【24h】

Predicting fault-prone software modules in telephone switches

机译:预测电话交换机中容易出现故障的软件模块

获取原文
获取原文并翻译 | 示例

摘要

An empirical study was carried out at Ericsson Telecom AB to investigate the relationship between several design metrics and the number of function test failure reports associated with software modules. A tool, ERIMET, was developed to analyze the design documents automatically. Preliminary results from the study of 130 modules showed that: based on fault and design data one can satisfactorily build, before coding has started, a prediction model for identifying the most fault-prone modules. The data analyzed show that 20 percent of the most fault-prone modules account for 60 percent of all faults. The prediction model built in this paper would have identified 20 percent of the modules accounting for 47 percent of all faults. At least four design measures can alternatively be used as predictors with equivalent performance. The size (with respect to the number of lines of code) used in a previous prediction model was not significantly better than these four measures. The Alberg diagram introduced in this paper offers a way of assessing a predictor based on historical data, which is a valuable complement to linear regression when prediction data is ordinal. Applying the method described in this paper makes it possible to use measures at the design phase to predict the most fault-prone modules.
机译:爱立信电信公司进行了一项实证研究,以研究几种设计指标与与软件模块相关的功能测试失败报告的数量之间的关系。开发了ERIMET工具来自动分析设计文档。对130个模块的研究得出的初步结果表明:基于故障和设计数据,可以在编码开始之前令人满意地构建一个预测模型,以识别出最容易出现故障的模块。分析的数据显示,最容易发生故障的模块中有20%占所有故障的60%。本文构建的预测模型将识别出20%的模块,占所有故障的47%。至少可以将四个设计度量用作具有等效性能的预测变量。先前的预测模型中使用的大小(相对于代码行数)并不明显好于这四个度量。本文介绍的Alberg图提供了一种基于历史数据评估预测变量的方法,当预测数据为序数时,这是线性回归的宝贵补充。应用本文描述的方法可以在设计阶段使用措施来预测最容易发生故障的模块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号