首页> 外文期刊>IEEE Transactions on Software Engineering >Learning to detect and avoid run-time feature interactions in intelligent networks
【24h】

Learning to detect and avoid run-time feature interactions in intelligent networks

机译:学习检测和避免智能网络中的运行时功能交互

获取原文
获取原文并翻译 | 示例

摘要

The Intelligent Network (IN) allows rapid changes in the services provisioned and their functionality. Services may be supplied by different service providers, making it unlikely that all service specifications will be available for examination by any single agency. Approaches to handle feature interaction problems must be able to operate within these constraints. Work by the authors has produced a generic run time feature interaction manager (FIM) concept to manage feature interactions in a live network. It monitors features as black boxes, learns their "correct" behavior and uses this to determine when feature interactions have occurred. The paper describes and compares experiences using three different techniques to realize the proposed approach. These are: state sequence monitoring, artificial neural networks (ANN), and rule based monitoring which also includes integrated generic resolution approaches. The paper explores the design alternatives with the various techniques, and reports on the results obtained from experimentation.
机译:通过智能网络(IN),可以快速更改所提供的服务及其功能。服务可能是由不同的服务提供商提供的,因此不可能所有服务规范都可以由任何一个代理机构进行检查。处理要素交互问题的方法必须能够在这些约束条件下运行。作者的工作产生了通用的运行时功能交互管理器(FIM)概念,用于管理实时网络中的功能交互。它以黑盒的形式监视要素,了解其“正确”行为,并使用它来确定何时发生要素交互。本文描述并比较了使用三种不同技术来实现该方法的经验。它们是:状态序列监视,人工神经网络(ANN)和基于规则的监视,其中还包括集成的通用解析方法。本文探讨了各种技术的设计替代方案,并报告了从实验中获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号