首页> 外文期刊>Software Engineering, IEEE Transactions on >WAMȁ4;The Weighted Average Method for Predicting the Performance of Systems with Bursts of Customer Sessions
【24h】

WAMȁ4;The Weighted Average Method for Predicting the Performance of Systems with Bursts of Customer Sessions

机译:WAMȁ4;用加权平均法预测突发客户会话的系统的性能

获取原文
获取原文并翻译 | 示例

摘要

Predictive performance models are important tools that support system sizing, capacity planning, and systems management exercises. We introduce the Weighted Average Method (WAM) to improve the accuracy of analytic predictive performance models for systems with bursts of concurrent customers. WAM considers the customer population distribution at a system to reflect the impact of bursts. The WAM approach is robust with respect to distribution functions, including heavy-tail-like distributions, for workload parameters. We demonstrate the effectiveness of WAM using a case study involving a multitier TPC-W benchmark system. To demonstrate the utility of WAM with multiple performance modeling approaches, we developed both Queuing Network Models and Layered Queuing Models for the system. Results indicate that WAM improves prediction accuracy for bursty workloads for QNMs and LQMs by 10 and 12 percent, respectively, with respect to a Markov Chain approach reported in the literature.
机译:预测性能模型是支持系统规模确定,容量规划和系统管理练习的重要工具。我们引入了加权平均法(WAM),以提高具有并发客户群的系统的分析预测性能模型的准确性。 WAM认为系统中的客户群体分布可以反映突发事件的影响。对于工作负载参数,WAM方法在分发功能(包括类似重尾的分发)方面具有鲁棒性。我们使用涉及多层TPC-W基准系统的案例研究来证明WAM的有效性。为了证明WAM具有多种性能建模方法的实用性,我们为系统开发了排队网络模型和分层排队模型。结果表明,相对于文献中报道的马尔可夫链方法,WAM分别将QNM和LQM突发性工作负载的预测准确性提高了10%和12%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号